ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Astakhov V. V., Shabunin A. V., Anishchenko V. S. Mechanisms of chaotic synchronization loss in the system of coupled cubic maps. Izvestiya VUZ. Applied Nonlinear Dynamics, 1999, vol. 7, iss. 2, pp. 3-11. DOI: 10.18500/0869-6632-1999-7-2-3-11

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

Mechanisms of chaotic synchronization loss in the system of coupled cubic maps

Autors: 
Astakhov Vladimir Vladimirovich, Yuri Gagarin State Technical University of Saratov
Shabunin Aleksej Vladimirovich, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University
Abstract: 

Bifurcational mechanisms of chaotic synchronization loss are investigated in the рареr. We demonstrate numerical experiments results of investigation of chaos synchronization in the system of the symmetrically coupled cubic maps. We show that loss of the chaotic synchronization is conditioned by bifurcations of the main family of saddle periodic orbits embedded in the chaotic attractor.

Key words: 
Acknowledgments: 
The work was supported by the RFBR (grant 98-02-16531).
Reference: 
  1. Pikovsky AS, Grassberger P. Symmetry breaking bifurcation for coupled chaotic attractors. J. Phys. A: Math. Gen. 1991;24(19):4587-4599. DOI: 10.1088/0305-4470/24/19/022.
  2. Ashvin Р, Buescu J, Stewart I. Bubbling оf attractors and synchronisation of chaotic oscillators. Phys. Lett. А. 1994;193(2):126-139. DOI: 10.1016/0375-9601(94)90947-4.
  3. Ashvin P, Buescu J, Stewart I. From attractors to chaotic saddle: a tale of transverse instability. Nonlinearity. 1996;9(3):703-737. DOI: 10.1088/0951-7715/9/3/006.
  4. Lai Y-C, Grebogi C, Yorke JА, Venkataramani SC. Riddling bifurcation in chaotic dynamical systems. Phys. Rev. Lett. 1996;77(1):55-58. DOI: 10.1103/PhysRevLett.77.55.
  5. Pikovsky A, Osipov G, Rosenblum M, Zaks M, Kurths J. Attractor-repeller collision and eyelet intermittency аt the transition to phase synchronization. Phys. Rev. Lett. 1997;79(1):47-50. DOI: 10.1103/PhysRevLett.79.47.
  6. Sushchik MM, Rulkov NF, Abarbanel HDI. Robustness and stability of synchronized chaos: аn illustrative model. IEEE Transactions оn Circuits and Systems. 1997;44(10):866-873. DOI: 10.1109/81.633875.
  7. Astakhov V, Shabunin А, Kapitaniak T, Anishchenko V. Loss оf chaos synchronization through the sequence of bifurcations оf saddle periodic orbits. Phys. Rev. Lett. 1997;79(6):1014-1017. DOI: 10.1103/PhysRevLett.79.1014.
  8. Astakhov V, Hasler M, Kapitaniak T, Shabunin A, Anishchenko V. Effect of parameter mismatch on the mechanism of chaos synchronization loss in coupled systems. Phys. Rev. E. 1998;58(5):5620-5628. DOI: 10.1103/PhysRevE.58.5620.
  9. Kuznetsov AP, Kuznetsov SP. Critical dynamics of coupled map lattices at the onset of chaos. Radiophysics and Quantum Electronics. 1991;34(10-11):1079-1115. (in Russian).
Received: 
04.03.1999
Accepted: 
17.05.1999
Published: 
03.07.1999