ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Anishchenko V. S., Vadivasova T. E., Sosnovtseva O. V. Mechanisms of strange nonchaotic attractor birth in the ring map with quasiperiodic excitation. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 3, pp. 34-43.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Mechanisms of strange nonchaotic attractor birth in the ring map with quasiperiodic excitation

Autors: 
Anishchenko Vadim Semenovich, Saratov State University
Vadivasova Tatjana Evgenevna, Saratov State University
Sosnovtseva Olga Vladimirovna, Danmarks Tekniske Universitet
Abstract: 

The results.of computer simulation of the dynamic of two-dimensional ring map with quasiperiodic excitation are represented on the control parameter plane. The mechanisms of the strange nonchaotic attractor regime appearance and its roughness in relation to external noise addition are established. The results were obtained using a method of bifurcational diagram drawing, analysis of attractor phase portrets, autocorrelation function calculation, with addition of rational approximation method.

Key words: 
Acknowledgments: 
We take the opportunity to thank Ju.Kurths, A.Pikovsky and U.Feudel for discussing the results of the work and helping with the calculations. The work was partially financed by the International Science Foundation (grant MK0000) and the State Committee for Higher Education of Russia (grant 93-8.2-10).
Reference: 
  1. Grebogi C, Ott E, Pelikan S, Yorke JA. Strange attractors that are not chaotic. Physica D. 1984;13(1-2):261-268. DOI: 10.1016/0167-2789(84)90282-3.
  2. Romeiras FJ, Bondeson A, Ott E, Antonsen ThM, Grebogi C. Quasiperiodically forced dynamical systems with strange nonchaotic attractors. Physica D. 1987;26(1-3):277-294. DOI: 10.1016/0167-2789(87)90229-6.
  3. Romeiras FJ, Ott Е. Strange nonchaotic attraciors of the damped pendulum with quasiperiodic forcing. Phys. Rev. A. 1987;35(10):4404-4413. DOI: 10.1103/physreva.35.4404.
  4. Ding M, Grebogi C, Ott Е. Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. Phys. Rev. A. 1989;39(5):2593-2598. DOI: 10.1103/physreva.39.2593.
  5. Kapitaniak T, Ponce E, Wojewoda J. Route to chaos via strange nonchaotic attractors. J. Phys. A: Math. Gen. 1990;23(8):L383. DOI: 10.1088/0305-4470/23/8/006.
  6. Brindley J, Kapitaniak T, El Noschie MS. Analitical conditions for strange chaotic and nonchaotic attractors of the quasiperiodically forced van der Pol equation. Physica D. 1991;51(1-3):28-38. DOI: 10.1016/0167-2789(91)90219-Y.
  7. Kapitaniak T. Generating strange nonchaotic trajectories. Phys. Rev. E. 1993;47(2):1408-1410. DOI: 10.1103/physreve.47.1408.
  8. Kapitaniak T, Wojewoda J. Attractors of Quasiperiodically Forced Systems. Singapore: World Scientific; 1994. 100 p. DOI: 10.1142/2139.
  9. Heagy JF, Hammel SM. The birth of strange nonchaotic attractors. Physica D. 1994;70(1-2):140-153. DOI: 10.1016/0167-2789(94)90061-2.
  10. Pikovsky AS, Feudel U. Characterizing strange nonchaotic attractors. Preprint Nld-002. Universitat Potsdam; 1994.
  11. Pikovsky AS, Feudel U. Correlations and spectra of strange nonchaotic attractors. J. Phys. A: Math. Gen. 1994;27(15):5209-5219. DOI: 10.1088/0305-4470/27/15/020.
  12. Kaneko K. Fractalization of torus. Progr. Theor. Phys. 1984;71(5):1112-1115. DOI: 10.1143/PTP.71.1112.
Received: 
28.12.1994
Accepted: 
02.03.1995
Published: 
05.04.1996