For citation:
Gromov V. A., Tomashchuk K. K., Beschastnov Y. N., Sidorenko A. A., Kakurin V. V. A method for constructing a complete bifurcation picture of a boundary value problem for nonlinear partial differential equations: application of the Kolmogorov-Arnold theorem. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 4, pp. 435-465. DOI: 10.18500/0869-6632-003160, EDN: NXMRAP
A method for constructing a complete bifurcation picture of a boundary value problem for nonlinear partial differential equations: application of the Kolmogorov-Arnold theorem
The purpose of this study is to develop a numerical method for bifurcation analysis of nonlinear partial differential equations, based on the reduction of partial differential equations to ordinary ones, using the Kolmogorov-Arnold theorem.
Methods. This paper describes a method for reducing partial differential equations to ordinary ones using the Kolmogorov-Arnold theorem, as well as methods for the bifurcation analysis of nonlinear boundary value problems for ordinary differential equations.
Results. The paper presents a new method for solving and bifurcation analysis of nonlinear boundary value problems for partial differential equations, which allow variational formulation. The method was applied to a nonlinear two-dimensional Bratu problem with Dirichlettype boundary conditions.
Conclusion. A new method of bifurcation analysis for nonlinear partial differential equations has been developed. Specifically, a method has been proposed for reducing partial different equations to ordinary equations, which allows the use of the developed apparatus of bifurcation analysis for boundary value problems of ordinary differential equations. This method allows conducting bifurcation analysis for arbitrary nonlinear partial differential equations.
- Arnold VI, Varchenko AN, Huseyn-Zadeh SM. Features of Differentiable Maps: Monodromy and Asymptotics of Integrals. M.: Nauka; 1984. 355 p. (in Russian).
- Gilmore R. Catastrophe Theory for Scientists and Engineers. N.Y.: Wiley; 1981. 666 p.
- Gilmore R. Catastrophe theory. In: Trigg G. L. (ed) Encyclopedia of Applied Physics. Vol. 3. N.Y.: Wiley; 1992. P. 85–115.
- Obodan NI, Gromov VA. Numerical analysis of the branching of solutions to nonlinear equations for cylindrical shells. Int. Appl. Mech. 2006;42:90–97. DOI: 10.1007/s10778-006-0062-7.
- Obodan NI, Lebedeyev OG, Gromov VA. Nonlinear Behaviour and Stability of Thin-Walled Shells. Berlin: Springer; 2013. 178 p. DOI: 10.1007/978-94-007-6365-4.
- Obodan NI, Adlucky VJ, Gromov VA. Rapid identification of pre-buckling states: a case of cylindrical shell. Thin-Walled Structures. 2018;124:449–457. DOI: 10.1016/j.tws.2017.12.034.
- Obodan NI, Adlucky VJ, Gromov VA. Prediction and control of buckling: the inverse bifurcation problems for von Karman equations. In: Dutta H, Peters J, editors. Applied Mathematical Analysis: Theory, Methods, and Applications. Cham: Springer; 2020. P. 353–381. DOI: 10.1007/978-3-319- 99918-0_11.
- Obodan NI, Gromov VA. The complete bifurcation structure of nonlinear boundary problem for cylindrical panel subjected to uniform external pressure. Thin-Walled Structures. 2016;107: 612–619. DOI: 10.1016/j.tws.2016.07.020.
- Obodan NI, Gromov VA. Nonlinear behavior and buckling of cylindrical shells subjected to localized external pressure. Journal of Engineering Mathematics. 2013;78:239–248. DOI: 10.1007/ s10665-012-9553-1.
- Antman SS. Bifurcation Theory and Nonlinear Eigenvalue Problems. San Francisco: WA Benjamin, 1969. 434 p.
- Kantorovich LV. Approximate Methods of Higher Analysis. N.Y.: Interscience Publishers; 1958. 681 p.
- Awrejcewicz J, Krysko-Jr. VA, Kalutsky LA, Zhigalov MV, Krysko VA. Review of the methods of transition from partial to ordinary differential equations: From macro- to nano-structural dynamics. Arch. Computat. Methods Eng. 2021;28:4781–4813. DOI: 10.1007/s11831-021-09550-5.
- Gromov VA. On an approach to solve the nonlinear elliptic equations of von Karman type. Journal of Optimization, Differential Equations and Their Applications. 2017;25(8):122–141. DOI: 10.15421/141707.
- Gromov VA. Postcritical behaviour and solution branching for the cylindrical shell theory nonlinear problems. PhD Thesis. Dnepropetrovsk: Dnepropetrovsk State University; 2006.
- Kolmogorov AN. On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables. In: Twelve Papers on Algebra and Real Functions. American Mathematical Society; 1961. Vol. 17. P. 369–373.
- Maiorov V, Pinkus A. Lower bounds for approximation by MLP neural networks. Neurocomputing. 1999;25(1–3):81–91. DOI: 10.1016/S0925-2312(98)00111-8.
- Sprecher DA. A numerical implementation of Kolmogorov’s superpositions. Neural Netw. 1996;9(5):765–772. DOI: 10.1016/0893-6080(95)00081-x.
- Sprecher DA. A numerical implementation of Kolmogorov’s superpositions II. Neural Netw. 1997;10(3):447–457. DOI: 10.1016/s0893-6080(96)00073-1.
- Shapiro HS. Topics in Approximation Theory. Berlin: Springer; 1971. 278 p. DOI: 10.1007/ BFb0058976.
- Doss R. Representations of continuous functions of several variables. American Journal of Mathematics. 1976;98(2):375–383. DOI: 10.2307/2373891.
- Vitushkin AG. About Multidimensional Variations. M.: Gostekhizdat; 1955. 220 p. (in Russian).
- Vitushkin AG, Khenkin GM. Linear superpositions of functions. Russian Math. Surveys. 1967; 22(1):77–125. DOI: 10.1070/RM1967v022n01ABEH001204.
- Koppen M. On the training of a Kolmogorov Network. In: Dorronsoro JR, editor. Artificial Neural Networks – ICANN 2002: International Conference. Berlin: Springer, 2002. P. 474–479. DOI: 10.1007/3-540-46084-5_77.
- Actor J. Computation for the Kolmogorov Superposition Theorem. PhD Thesis. Houston: Rice University; 2018. 148 p.
- Liu Z, Wang Y, Vaidya S, Ruehle F, Halverson J, Soljaci c M, Hou TY, Tegmark M. KAN:Kolmogorov–Arnold Networks. arXiv:2404.19756. ArXiv Preprint; 2024. DOI: 10.48550/arXiv. 2404.19756.
- Lorentz GG. Approximation of Functions. New York: Holt, Rinehart and Winston; 1966. 188 p.
- Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation. 2008;79(3):763–813. DOI: 10.1016/j.matcom.2008.01.003.
- Zhelezko IP, Obodan NI. Secondary branching and the post critical behaviour of thin-walled shells during non-uniform deformation. J. Appl. Math. Mech. 1997;61(2):333–337. DOI: 10.1016/S0021- 8928(97)00042-7.
- Poston T, Stewart I. Catastrophe Theory and Its Applications. Gloucester: Courier Corporation; 2014. 512 p.
- Andreev LV, Obodan NI, Lebedev AG. Stability of Shells under Nonaxisymmetric Deformation. .: Nauka; 1988. 208 p. (in Russian).
- Gromov VA, Borisenko EA. Predictive clustering on non-successive observations for multi-step ahead chaotic time series prediction. Neural Comput. Applic. 2015;26:1827–1838. DOI: 10.1007/ s00521-015-1845-8.
- Fomin S, Alekseev V, Tikhomirov V. Optimal Equation. .: Fizmatlit; 2005. 385 p.
- Odejide SA, Aregbesola YAS. A note on two dimensional Bratu problem. Kragujevac Journal of Mathematics. 2006;29:49–56.
- Temimi H, Ben-Romdhane M, Baccouch M, Musa MO. A two-branched numerical solution of the two-dimensional Bratu’s problem. Applied Numerical Mathematics. 2020;153:202–216. DOI: 10.1016/j.apnum.2020.02.010.
- Bratu G. Sur les equations int egrales non lin eaires. Bulletin de la Soci et e Math ematique de France. 1914;42:113–142. (in French). DOI: 10.24033/bsmf.943.
- Boyd JP. An analytical and numerical study of the two-dimensional Bratu equation. J. Sci. Comput. 1986;1:183–206. DOI: 10.1007/BF01061392.
- Gromov VA. Catastrophes of cylindrical shell. In: Dutta H., editor. Mathematical Modelling: Principle and Theory. Providence: American Mathematical Society; 2023. P. 215–244. DOI: 10.1090/conm/786/15798.
- Courant R, Hilbert D. Methods of Mathematical Physics. Vol. 1. N.Y.: Wiley; 2008. 575 p.
- Weinberg MM, Trenogin VA. Theory of Branching Solutions of Nonlinear Equations. .: Nauka; 1969. 527 p. (in Russian).
- Agapov MS, Kuznetsov EB, Shalashilin VI. Numerical modeling of the problem of strong nonlinear deformation in Eulerian coordinates. Math. Models Comput. Simul. 2009;1:263–273. DOI: 10.1134/S2070048209020094.
- 2583 reads