ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


bifurcation analysis

Dynamics of the Rabinovich–Fabrikant system and its generalized model in the case of negative values of parameters that have the meaning of dissipation coefficients

Purpose of this work is a numerical study of the Rabinovich–Fabrikant system and its generalized model, which describe the occurrence of chaos during the parametric interaction of three modes in a nonequilibrium medium with cubic nonlinearity, in the case when the parameters that have the meaning of dissipation coefficients take negative values. These models demonstrate a rich dynamics that differs in many respects from what was observed for them, but in the case of positive values of the parameters. Methods.

Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling

Purpose. The local dynamics of the laser chain model with optoelectronic delayed unidirectional coupling is investigated. A system of equations is considered that describes the dynamics of a closed chain of a large number of lasers with optoelectronic delayed coupling between elements. An equivalent distributed integro-differential model with a small parameter inversely proportional to the number of lasers in the chain is proposed.

Generalized Rabinovich–Fabrikant system: equations and its dynamics

The purpose of this work is to numerically study of the generalized Rabinovich–Fabrikant model. This model is obtained using the Lagrange formalism and describing the three-mode interaction in the presence of a general cubic nonlinearity. The model demonstrates very rich dynamics due to the presence of third-order nonlinearity in the equations. Methods. The study is based on the numerical solution of the obtained analytically differential equations, and their numerical bifurcation analysis using the MаtCont program. Results.

Normalized boundary value problems in the model of optoelectronic oscillator delayed

Purpose of this work is reduction of differential-difference-model of optic-electronic oscillator to more simple normalized boundary value problems. We study the dynamics of an optoelectronic oscillator with delayed feedback in the vicinity of the zero equilibrium state. The differential-difference-model contains a small parameter with the derivative. It is shown that in a certain neighborhood of the bifurcation point, the number of roots of the characteristic equation that have a real part close to zero increases unlimitedly with decreasing small parameter.