ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Pisarchik A. N., Khorev V. S., Badarin A. A., Antipov V. М., Budarina A. O., Hramov A. E. Methodology of the neurophysiological experiments with visual stimuli to assess foreign language proficiency. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, iss. 2, pp. 202-224. DOI: 10.18500/0869-6632-003031, EDN: ETJCBV

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Article type: 

Methodology of the neurophysiological experiments with visual stimuli to assess foreign language proficiency

Pisarchik Alexander Nikolaevich, Universidad Politécnica de Madrid, Centre for Biomedical Technology
Khorev Vladimir Sergeevich, Innopolis University
Badarin Artem Aleksandrovich, Immanuel Kant Baltic Federal University
Budarina Anna Olegovna, Immanuel Kant Baltic Federal University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University

Aim of this study is to compare different experimental paradigms and to determine parameters suitable for conducting a neurophysiological experiment with visual stimuli to assess foreign language proficiency and providing further time series analysis of electrical brain activity to reveal specific biomarkers.

Methods. This paper explores the possibilities and limitations of various experimental studies using the metaanalysis paradigm. Statistical approaches are used to determine significance of the results.

Results. We review the current state of research in the field of experimental works related to visual stimulus presentation and verbal performance acquisition. Generalizations and analytical estimates of the experimental parameters used in the studies are carried out to provide recommendations for future experimental research.

Conclusion. In this area of applied research, we have developed experimental design and algorithms for working with multiple data sources. In addition, experimental encephalographic studies have been carried out, that allowed the optimal temporal structure selection.

This work was supported by Priority-2030 grant No. 260-L-22
  1. Feiler JB, Stabio ME. Three pillars of educational neuroscience from three decades of literature. Trends in Neuroscience and Education. 2018;13:17–25. DOI: 10.1016/j.tine.2018.11.001.
  2. Jolles J, Jolles DD. On neuroeducation: Why and how to improve neuroscientific literacy in educational professionals. Front. Psychol. 2021;12:752151. DOI: 10.3389/fpsyg.2021.752151.
  3. Bukina TV, Khramova MВ, Kurkin SA. Modern research on primary school children brain functioning in the learning process: Review. Izvestiya VUZ. Applied Nonlinear Dynamics. 2021;29(3):449–456. DOI: 10.18500/0869-6632-2021-29-3-449-456.
  4. Costa A, Santesteban M. Lexical access in bilingual speech production: Evidence from language switching in highly proficient bilinguals and L2 learners. Journal of Memory and Language. 2004;50(4):491–511. DOI: 10.1016/j.jml.2004.02.002.2004;50(4):491–511. DOI: 10.1016/j.jml.2004.02.002.
  5. Verhoef K, Roelofs A, Chwilla DJ. Role of inhibition in language switching: Evidence from eventrelated brain potentials in overt picture naming. Cognition. 2009;110(1):84–99. DOI: 10.1016/ j.cognition.2008.10.013.
  6. Roelofs A, Piai V, Rodriguez GG. Attentional inhibition in bilingual naming performance: evidence from delta-plot analyses. Front. Psychol. 2011;2:184. DOI: 10.3389/fpsyg.2011.00184.
  7. Declerck M, Koch I, Philipp AM. Digits vs. pictures: The influence of stimulus type on language switching. Bilingualism: Language and Cognition. 2012;15(4):896–904. 10.1017/ S1366728912000193.
  8. Parker JO, Green DW, Grogan A, Pliatsikas C, Filippopolitis K, Ali N, Lee HL, Ramsden S, Gazarian K, Prejawa S, Seghier ML, Price CJ. Where, when and why brain activation differs for bilinguals and monolinguals during picture naming and reading aloud. Cereb. Cortex. 2012;22(4):892–902. DOI: 10.1093/cercor/bhr161.
  9. Allen DB, Conklin K. Cross-linguistic similarity and task demands in Japanese-English bilingual processing. PLoS ONE. 2013;8(8):e72631. DOI: 10.1371/journal.pone.0072631.
  10. Del Prato P, Pylkkanen L. MEG evidence for conceptual combination but not numeral quantification in the left anterior temporal lobe during language production. Front. Psychol. 2014;5:524. DOI:10.3389/fpsyg.2014.00524.
  11. Chholak P, Tabari F, Pisarchik AN. Revealing the neural network underlying covert picturenaming paradigm using magnetoencephalography. Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(1):76–95. DOI: 10.18500/0869-6632-2022-30-1-76-95.
  12. Lensink SE, Verdonschot RG, Schiller NO. Morphological priming during language switching: an ERP study. Front. Hum. Neurosci. 2014;8:995. DOI: 10.3389/fnhum.2014.00995.
  13. Conner CR, Chen G, Pieters TA, Tandon N. Category specific spatial dissociations of parallel processes underlying visual naming. Cereb. Cortex. 2014;24(10):2741–2750. DOI: 10.1093/ cercor/bht130.
  14. Sianipar A, Middelburg R, Dijkstra T. When feelings arise with meanings: How emotion and meaning of a native language affect second language processing in adult learners. PLoS ONE. 2015;10(12):e0144576. DOI: 10.1371/journal.pone.0144576.
  15. Miozzo M, Pulvermuller F, Hauk O. Early parallel activation of semantics and phonology in picturenaming: Evidence from a multiple linear regression MEG study. Cereb. Cortex. 2015;25(10): 3343–3355. DOI: 10.1093/cercor/bhu137.
  16. Durlik J, Szewczyk J, Muszynski M, Wodniecka Z. Interference and inhibition in bilingual language comprehension: Evidence from Polish-English interlingual homographs. PLoS ONE. 2016;11(3):e0151430. DOI: 10.1371/journal.pone.0151430.
  17. Bastarrika A, Davidson DJ. An event related field study of rapid grammatical plasticity in adult second-language learners. Front. Hum. Neurosci. 2017;11:12. DOI: 10.3389/fnhum.2017.00012.
  18. Bhatia D, Prasad SG, Sake K, Mishra RK. Task irrelevant external cues can influence language selection in voluntary object naming: Evidence from Hindi-English bilinguals. PLoS ONE. 2017;12(1):e0169284. DOI: 10.1371/journal.pone.0169284.
  19. Blanco-Elorrieta E, Pylkkanen L. Bilingual language switching in the laboratory versus in the wild: The spatiotemporal dynamics of adaptive language control. J. Neurosci. 2017;37(37):9022–9036. DOI: 10.1523/JNEUROSCI.0553-17.2017.
  20. Mosca M, de Bot K. Bilingual language switching: Production vs. recognition. Front. Psychol. 2017;8:934. DOI: 10.3389/fpsyg.2017.00934.
  21. Yang J, Ye J, Wang R, Zhou K, Wu YJ. Bilingual contexts modulate the inhibitory control network. Front. Psychol. 2018;9:395. DOI: 10.3389/fpsyg.2018.00395. 
  22. Plat R, Lowie W, de Bot K. Word naming in the L1 and L2: A dynamic perspective on automatization and the degree of semantic involvement in naming. Front. Psychol. 2018;8:2256. DOI: 10.3389/fpsyg.2017.02256.
  23. Forseth KJ, Kadipasaoglu CM, Conner CR, Hickok G, Knight RT, Tandon N. A lexical semantic hub for heteromodal naming in middle fusiform gyrus. Brain. 2018;141(7):2112–2126. DOI: 10.1093/brain/awy120.
  24. Lavric A, Clapp A, East A, Elchlepp H, Monsell S. Is preparing for a language switch like preparing for a task switch? Journal of Experimental Psychology: Learning, Memory, and Cognition. 2019;45(7):1224–1233. DOI: 10.1037/xlm0000636.
  25. Liu H, Zhang M, Perez A, Xie N, Li B, Liu Q. Role of language control during interbrain phase synchronization of cross-language communication. Neuropsychologia. 2019;131:316–324. DOI: 10.1016/j.neuropsychologia.2019.05.014.
  26. Runnqvist E, Strijkers K, Costa A. Error-based learning and lexical competition in word production: Evidence from multilingual naming. PLoS ONE. 2019;14(3):e0213765. DOI: 10.1371/journal. pone.0213765.
  27. Massa E, Kopke B, El Yagoubi R. Age-related effect on language control and executive control in bilingual and monolingual speakers: Behavioral and electrophysiological evidence. Neuropsychologia. 2020;138:107336. DOI: 10.1016/j.neuropsychologia.2020.107336.
  28. Zhang Y, Cao N, Yue C, Dai L, Wu YJ. The interplay between language form and concept during language switching: A behavioral investigation. Front. Psychol. 2020;11:791. DOI: 10.3389/fpsyg. 2020.00791.
  29. Zhu JD, Seymour RA, Szakay A, Sowman PF. Neuro-dynamics of executive control in bilingual language switching: An MEG study. Cognition. 2020;199:104247. DOI: 10.1016/j.cognition.2020. 104247.
  30. Hofweber J, Marinis T, Treffers-Daller J. Experimentally induced language modes and regular code-switching habits boost bilinguals executive performance: Evidence from a within-subject paradigm. Front. Psychol. 2020;11:542326. DOI: 10.3389/fpsyg.2020.542326.
  31. Tabassi Mofrad F, Jahn A, Schiller NO. Dual function of primary somatosensory cortex in cognitive control of language: Evidence from resting state fMRI. Neuroscience. 2020;446:59–68. DOI: 10.1016/j.neuroscience.2020.08.032.
  32. Schramm S, Tanigawa N, Tussis L, Meyer B, Sollmann N, Krieg SM. Capturing multiple interaction effects in L1 and L2 object-naming reaction times in healthy bilinguals: a mixed-effects multiple regression analysis. BMC Neurosci. 2020;21(1):3. DOI: 10.1186/s12868-020-0549-x.
  33. Weiss Lucas C, Pieczewski J, Kochs S, Nettekoven C, Grefkes C, Goldbrunner R, Jonas K. The cologne picture naming test for language mapping and monitoring (CoNaT): An open set of 100 black and white object drawings. Front. Neurol. 2021;12:633068. DOI: 10.3389/fneur.2021.633068.
  34. Wu R, Struys E. Language dominance and sociolinguistic experience are related to language control and domain-general monitoring control: An investigation in bilinguals who live in a minority/majority sociolinguistic setting. Front. Psychol. 2021;12:594648. DOI: 10.3389/fpsyg. 2021.594648.
  35. Kang X, Matthews S, Yip V, Wong PCM. Language and nonlanguage factors in foreign language learning: evidence for the learning condition hypothesis. npj Science of Learning. 2021;6(1):28. DOI: 10.1038/s41539-021-00104-9.
  36. Liu C, Li L, Jiao L, Wang R. Bilingual language control flexibly adapts to cultural context. Front. Psychol. 2021;12:744289. DOI: 10.3389/fpsyg.2021.744289.
  37. Radman N, Jost L, Dorood S, Mancini C, Annoni JM. Language distance modulates cognitive control in bilinguals. Sci. Rep. 2021;11(1):24131. DOI: 10.1038/s41598-021-02973-x.
  38. Honari-Jahromi M, Chouinard B, Blanco-Elorrieta E, Pylkkanen L, Fyshe A. Neural representation of words within phrases: Temporal evolution of color-adjectives and object-nouns during simple composition. PLoS ONE. 2021;16(3):e0242754. DOI: 10.1371/journal.pone.0242754.
  39. Verdonschot RG, Phudng HTL, Tamaoka K. Phonological encoding in Vietnamese: An experimental investigation. Quarterly Journal of Experimental Psychology. 2022;75(7):1355–1366. DOI: 10.1177/ 17470218211053244.
  40. Visani E, Sebastiano DR, Duran D, Garofalo G, Magliocco F, Silipo F, Buccino G. The semantics of natural objects and tools in the brain: A combined behavioral and MEG study. Brain Sci. 2022;12(1):97. DOI: 10.3390/brainsci12010097.
  41. Busch JL, Haeussler FS, Domahs F, Timmermann L, Weber I, Oehrn CR. German normative data with naming latencies for 283 action pictures and 600 action verbs. Behavior Research Methods. 2022;54(2):649–662. DOI: 10.3758/s13428-021-01647-w.
  42. Krautz AE, Keuleers E. LinguaPix database: A megastudy of picture-naming norms. Behavior Research Methods. 2022;54(2):941–954. DOI: 10.3758/s13428-021-01651-0.
  43. Wu R, Struys E. A domain-general monitoring account of bilingual language control in recognition: The role of language dominance and bilingual experience. Front. Psychol. 2022;13:854898. DOI: 10.3389/fpsyg.2022.854898.
  44. Yang W, Gu Y, Fang Y, Sun Y. Mental representations of time in English monolinguals, Mandarin monolinguals, and Mandarin–English bilinguals. Front. Psychol. 2022;13:791197. DOI: 10.3389/fpsyg.2022.791197.
  45. Baker DH, Vilidaite G, Lygo FA, Smith AK, Flack TR, Gouws AD, Andrews TJ. Power contours: Optimising sample size and precision in experimental psychology and human neuroscience. Psychological Methods. 2021;26(3):295–314. DOI: 10.1037/met0000337.
  46. Walker GM, Basilakos A, Fridriksson J, Hickok G. Beyond percent correct: Measuring change in individual picture naming ability. Journal of Speech, Language, and Hearing Research. 2022;65(1):215–237. DOI: 10.1044/2021_JSLHR-20-00205.
  47. Welford AT. Choice Reaction Time: Basic Concepts. New York: Academic Press; 1980. 128 p.
  48. Jain A, Bansal R, Kumar A, Singh KD. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. International Journal of Applied and Basic Medical Research. 2015;5(2):124–127. DOI: 10.4103/2229-516X. 157168.
  49. Fritsche M, Lawrence SJD, de Lange FP. Temporal tuning of repetition suppression across the visual cortex. J. Neurophysiol. 2020;123(1):224–233. DOI: 10.1152/jn.00582.2019.
  50. Borovkov AA. Mathematical Statistics. New York: Gordon & Breach; 1998. 570 p.
  51. Kostandov EA, Cheremushkin EA, Yakovenko IA, Petrenko NE. Induced synchronization of the alpha rhythm during the pauses between visual stimuli with different levels of cognitive set plasticity. Neuroscience and Behavioral Physiology. 2015;45(2):154–163. DOI: 10.1007/s11055- 015-0053-4.
  52. Babiloni C, Miniussi C, Babiloni F, Carducci F, Cincotti F, Del Percio C, Sirello G, Fracassi C, Nobre AC, Rossini PM. Sub-second "temporal attention" modulates alpha rhythms. A high-resolution EEG study. Cognitive Brain Research. 2004;19(3):259–268. DOI: 10.1016/j.cogbrainres. 2003.12.010.
  53. Coull JT, Nobre AC. Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 1998;18(18):7426–7435. DOI: 10.1523/JNEUROSCI.18-18-07426.1998.
  54. D'Esposito M. From cognitive to neural models of working memory. Phil. Trans. R. Soc. B. 2007;362(1481):761–772. DOI: 10.1098/rstb.2007.2086.
  55. Gazzaley A, Nobre AC. Top-down modulation: bridging selective attention and working memory. Trends Cogn. Sci. 2012;16(2):129–135. DOI: 10.1016/j.tics.2011.11.014.
  56. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn. Sci. 2008;12(7):273–280. DOI: 10.1016/j.tics.2008.04.002.
  57. Alavash M, Tune S, Obleser J. Dynamic large-scale connectivity of intrinsic cortical oscillations supports adaptive listening in challenging conditions. PLoS Biol. 2021;19(10):e3001410. DOI: 10.1371/journal.pbio.3001410.
  58. Liu H, Hu Z, Guo T, Peng D. Speaking words in two languages with one brain: Neural overlap and dissociation. Brain Research. 2010;1316:75–82. DOI: 10.1016/j.brainres.2009.12.030.
  59. Smets EMA, Garssen B, Cull A, De Haes JCJM. Application of the multidimensional fatigue inventory (MFI-20) in cancer patients receiving radiotherapy. British Journal of Cancer. 1996;73(2): 241–245. DOI: 10.1038/bjc.1996.42.
  60. Lee KA, Hicks G, Nino-Murcia G. Validity and reliability of a scale to assess fatigue. Psychiatry Research. 1991;36(3):291–298. DOI: 10.1016/0165-1781(91)90027-M.
  61. Sato SD, Choi JT. Corticospinal drive is associated with temporal walking adaptation in both healthy young and older adults. Front. Aging Neurosci. 2022;14:920475. DOI: 10.3389/fnagi.2022. 920475.
  62. Hoonakker P, Carayon P, Gurses AP, Brown R, Khunlertkit A, McGuire K, Walker JM. Measuring workload of ICU nurses with a questionnaire survey: the NASA Task Load Index (TLX). IIE Transactions on Healthcare Systems Engineering. 2011;1(2):131–143. DOI: 10.1080/19488300. 2011.609524.
  63. Mouze-Amady M, Raufaste E, Prade H, Meyer JP. Fuzzy-TLX: using fuzzy integrals for evaluating human mental workload with NASA-Task Load indeX in laboratory and field studies. Ergonomics. 2013;56(5):752–763. DOI: 10.1080/00140139.2013.776702.
  64. Said S, Gozdzik M, Roche TR, Braun J, Rossler J, Kaserer A, Spahn DR, Nothiger CB, Tscholl DW. Validation of the raw National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire to assess perceived workload in patient monitoring tasks: Pooled analysis study using mixed models. J. Med. Internet Res. 2020;22(9):e19472. DOI: 10.2196/19472.
  65. English Vocabulary Level Test [Electronic resource]. Oxford Online English; 2011. Available from:
  66. Gentilucci M, Bernardis P, Crisi G, Dalla Volta R. Repetitive transcranial magnetic stimulation of Broca’s area affects verbal responses to gesture observation. Journal of Cognitive Neuroscience. 2006;18(7):1059–1074. DOI: 10.1162/jocn.2006.18.7.1059.
Available online: