ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Nonlinear systems

Self-organization dynamics of charge carrier concentration in semiconductors due to the charge injection

The purpose of this study is to investigate the phenomenon of self-organization of the dynamics of charge carriers in semiconductor structures. Investigate the basic model, give a numerical estimate for given parameters and propose its modification. Determine the dependence of the evaluation results on the control parameter. Consider the dynamics when the control parameter depends on time. Carry out theoretical analysis, numerical simulation and build graphs.

Transfer of passive particles in the velocity field of vortex tripole moving on a plane

Purpose of this article is to study the transport of passive particles in the velocity field of a vortex tripole with a change in the parameter that determines the speed of the configuration movement. A structure consisting of a central vortex and satellite vortices rotating around it with the opposite vorticity is understood as a tripole. We employ a system of three point vortices, the most simple mathematical representation of a vortex tripole, which may be expressed as a system of nonlinear ordinary differential equations with a parameter.

Methodology of the neurophysiological experiments with visual stimuli to assess foreign language proficiency

Aim of this study is to compare different experimental paradigms and to determine parameters suitable for conducting a neurophysiological experiment with visual stimuli to assess foreign language proficiency and providing further time series analysis of electrical brain activity to reveal specific biomarkers.

Methods. This paper explores the possibilities and limitations of various experimental studies using the metaanalysis paradigm. Statistical approaches are used to determine significance of the results.

Synchronization of excitation waves in a two-layer network of FitzHugh–Nagumo neurons with noise modulation of interlayer coupling parameters

The purpose of this work is to study the possibility of synchronization of wave processes in distributed excitable systems by means of noise modulation of the coupling strength between them. Methods. A simple model of a neural network, which consists of two coupled layers of excitable FitzHugh–Nagumo oscillators with a ring topology, is studied by numerical simulation methods. The connection between the layers has a random component, which is set for each pair of coupled oscillators by independent sources of colored Gaussian noise. Results.

Bifurcation of public opinion created by social media algorithms

The purpose of this work is to consider the possibility of nonlinear influence of social media algorithms to the users opinions. A social media inherent algorithm of information ranging interacts with the user inherent bias and that increases the positive feedback loop. The result of this interaction is receiving by the user the only one side of an opinion and the user looses the very possibility to receive the opposite information. The conditions for the society polarization by means of a social media are investigated. Methods.

Human brain state monitoring in perceptual decision-making tasks

The purpose of this review is to observe the current state of research on sensorimotor integration in the human brain during visual perception and subsequent decision-making under conditions of ambiguous information. Methods. This review examines the approaches of time-frequency wavelet analysis for brain activity when performing perceptual tasks, as well as the possibility of using such methods in the tasks of constructing brain – computer interfaces. Results.

Modeling of wave patterns at the combustion front

In experimental studies of the propagation of combustion waves in gaseous media, it was found that, under certain conditions, autowave – spiral or target – patterns appear at the wave front. The purpose of the present study is to propose a mathematical model that can explain this phenomenon based on the known chemical kinetics of hydrogen combustion. Model. The original detailed model was first reduced to four equations that adequately describe the propagation of the combustion wave.

Mathematical model and dynamical analysis of the human equilibrium seeking training

The purpose of this work is to determine the ability of the partial directed coherence method to identify the
directed interaction between nonlinear systems correctly in presence of nonlinear couplings between systems, as well as
in the case when the measured signals are generated by objects of high dimension. The another purpose is to determine
the dependence of the coupling estimation results on the parameters: series length, sampling rate, model dimension and the

Non-contact atomic force microscope: Modeling and simulation using van der Pol averaging method

Topic and aim. One of the tools which are extremely useful and valuable for creating a topography of surfaces, measuring forces, and manipulating material with nano-meter-scale features is the Atomic force microscope (AFM). Since it can create the image of the surface object in different mediums at the nano-scale, AFM can be used in a wide variety of applications and industries. This work aimed at creating the mathematical model of the non-contact atomic force microscope. Models and Methods.

Non-Contact Atomic Force Microscope: Modeling and Simulation using Van der Pol Averaging Method

One of the tools which are extremely useful and valuable for creating a topography of surfaces, measuring forces, and manipulating material with nano-meter-scale features is the Atomic force microscope (AFM). Since it can create the image of the surface object in different mediums at the nano-scale, AFM can be used in a wide variety of applications and industries. The lumped parameter model of the atomic force microscope in the non-contact operation mode is utilized to make the mathematical model of the micro cantilever of the AFM in this article.

Pages