ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ginzburg N. S., Зотова И. Microwave electronics as art of energy flows manipulation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 5, pp. 51-83. DOI: 10.18500/0869-6632-2012-20-5-51-83

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 93)
Language: 
Russian
Article type: 
Proceedings
UDC: 
537.86; 537.87; 621.373; 621.385.6

Microwave electronics as art of energy flows manipulation

Autors: 
Ginzburg Naum Samuilovich, Institute of Applied Physics of the Russian Academy of Sciences
Зотова Ирина, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

Classification of electronic oscillators and amplifiers has been performed based on the ratio between directions of the kinetic energy of electrons and electromagnetic energy flows. It is shown that management of electromagnetic flows, such as through the use of natural diffraction spread and with various modifications of Bragg structures, is an effective method to synchronize the radiation of electron beams with transverse size significantly exceeding the wavelength.

Reference: 
  1. Gaponov AV, Petelin MI, Yulpatov VK. The induced radiation of excited classical oscillators and its use in high-frequency electronics. Radiophys. Quantum Electron. 1967;10(9–10):794–813. DOI: 10.1007/BF01031607.
  2. Pierce JR. Traveling Wave Tubes. New York: Van Nostrand Company; 1950.
  3. Shevchik VN, Trubetskov DM, editors. Backward Wave Tube Electronics. Saratov: Saratov University Publishing; 1979. 195 p. (in Russian).
  4. Gaponov AV, Goldenberg AL, Grigoriev DP, Orlova IM, Pankratova TB, Petelin MI. Induced synchrotron emission of electrons in hollow resonators. JETP Letters. 1965;2(9):430–434 (in Russian).
  5. Rusin FS, Bogomolov GD. The orotron, an electronic device with an open resonator and a reflecting grating. Radiophys. Quantum Electron. 1968;11(5):430–433. DOI: 10.1007/BF01034372.
  6. Shestopalov VP. Diffractive Electronics. Kharkov: Vishchi Shkola, Kharkiv State University; 1976. 231 p. (in Russian).
  7. Dunn DA, Harman WA, Field LM, Kino GS. Theory of the transverse-current traveling-wave tube. Proc. IRE. 1956;44(7):879–887. DOI: 10.1109/JRPROC.1956.275142.
  8. Ginzburg NS, Peskov NY, Sergeev AS. Spatial synchronization of radiation from broad ribbon electron beams in an FEL with two-dimensional distributed feedback. Tech. Phys. Lett. 1993;19(18):52–55 (in Russian).
  9. Ginzburg NS, Zaslavskii VY, Zotova IV et al. Terahertz free-electron lasers with bragg structures based on the coupling between traveling and quasicritical waves. JETP Letters. 2010;91(6):266–270. DOI: 10.1134/S0021364010060020.
  10. Bugaev SP, Kanavets VI, Koshelev VI, Cherepenin VA. Relativistic Multiwave Microwave Generators. Novosibirsk: Nauka; 1991. 293 p. (in Russian).
  11. Petelin MI, Kovalev NF. Mode selection in high-frequency relativistic electron generators with distributed interaction. In: Relativistic High-Frequency Electronics. Problems of Increasing the Power and Frequency of Radiation. Gorky: IAP AS USSR; 1981. P. 62–100 (in Russian).
  12. Ginzburg NS, Zotova IV, Sergeev AS. Diffraction selection of modes in planar backward-wave oscillators. Radiophys. Quantum Electron. 2009;52(8):568–575. DOI: 10.1007/s11141-010-9165-4.
  13. Ginzburg NS, Zavol'skii NA, Nusinovich GS, Sergeev AS. Self-oscillation in uhf generators with diffraction radiation output. Radiophys. Quantum Electron. 1986;29(1):89–97. DOI: 10.1007/BF01034008.
  14. Bugaev SP, Cherepenin VA, Kanavets VI, et al. Relativistic multiwave Cherenkov generators. IEEE Trans. Plasma Sci. 1990;18(3):525–536. DOI: 10.1109/27.55924.
  15. Bratman VL, Denisov GG, Ofitserov MM, et al. Millimeter-wave HF relativistic electron oscillators. IEEE Trans. Plasma Sci. 1987;15(1):2–15. DOI: 10.1109/TPS.1987.4316655.
  16. Ginzburg NS, Zaslavskii VY, Malkin AM, Sergeev AS. Quasi-optical model of relativistic surface-wave generators for millimeter and submillimeter range. Tech. Phys. Lett. 2011;37(7):605. DOI: 10.1134/S1063785011070066.
  17. Ginzburg NS, Zaslavskii VY, Malkin AM, Sergeev AS. Relativistic surface-wave oscillators with 1D and 2D periodic structures. Tech. Phys. 2012;57(12):1692–1705. DOI: 10.1134/S1063784212120110.
  18. Katsenelenbaum BZ. Theory of Irregular Waveguides with Slowly Varying Parameters. Moscow: AS USSR; 1961. 218 p. (in Russian).
  19. Ginzburg NS, Zotova IV, Murav’ev AA, Sergeev AS. Formation of the transverse field structure in terahertz planar free-electron lasers. Tech. Phys. 2011;56(3):400. DOI: 10.1134/S1063784211030066.
  20. Fedotov AE, Makhalov PB. Transverse dynamics of а surface wave excited by а wide electron beam. Phys. Plasmas. 2012;19(3):033103. DOI: 10.1063/1.3691900.
  21. Glyavin MY, Luchinin AG, Golubiatnikov GY. 1.5 kW, 1 THz gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 2008;100(1):015101. DOI: 10.1103/PhysRevLett.100.015101.
  22. Bratman VL, Kalynov YK, Manuilov VN. Large-orbit gyrotron operation in the terahertz frequency range. Phys. Rev. Lett. 2009;102(24):245101. DOI: 10.1103/PhysRevLett.102.245101.
  23. Ginzburg NS, Zotova IV, Sergeev AS, et al. High power terahertz-range planar gyrotrons with transverse energy extraction. Phys Rev Lett. 2012;108(10):105101. DOI: 10.1103/PhysRevLett.108.105101.
  24. Arzhannikov AV, Ginzburg NS, Zaslavskii VY et al. Generation of spatially coherent radiation in free-electron masers with two-dimensional distributed feedback. JETP Letters. 2008;87(11):618–622. DOI: 10.1134/S0021364008110052.
  25. Dem’yanenko MA, Esaev DG, Knyazev BA et al. Imaging with a 90 frames microbolometer focal plane array and high-power terahertz FEL. Appl. Phys. Lett. 2008;92(13):131116. DOI: 10.1063/1.2898138.
  26. Neil GR, Bohn CL, Benson SV et al. Sustained kilowatt lasing in FEL with same-cell energy recovery. Phys. Rev. Lett. 2000;84(4):662–665. DOI: 10.1103/PhysRevLett.84.662.
  27. Kazakevich GM, Pavlov VM, Jeong YU et al. Magnetron-driven microtron injector of a terahertz FEL. Phys. Rev. ST-AB. 2009;12(4):040701. DOI: 10.1103/PhysRevSTAB.12.040701.
  28. Orzechowski TJ, Anderson BR, Clark JC et al. High-efficiency extraction of microwave radiation from a tapered-wiggler FEL. Phys. Rev. Lett. 1986;57(17):2172–2175. DOIL 10.1103/PhysRevLett.57.2172.
  29. Elias LR, Ramian G, Hu J, Amir A. Observation of single-mode operation in a FEL. Phys. Rev. Lett. 1986;57(4):424–427. DOI: 10.1103/PhysRevLett.57.424.
  30. Abramovich A, Canter M, Gover A et al. High spectral coherence in long-pulse and continuous FEL. Phys. Rev. Lett. 1999;82(26):5257–5260. DOI: 10.1103/PhysRevLett.82.5257.
  31. Konoplev IV, Cross AW, Phelps ADR et. al. Experimental and theoretical studies of a coaxial free-electron maser based on two-dimensional distributed feedback. Phys. Rev. E. 2007;76(5):056406. DOI: 10.1103/PhysRevE.76.056406. 
Received: 
20.09.2012
Accepted: 
20.09.2012
Published: 
31.01.2013
Short text (in English):
(downloads: 74)