ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Pavlov E. A., Osipov G. V. Modeling of cardiac activity on the basis of maps: dynamics of single element. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 3, pp. 104-115. DOI: 10.18500/0869-6632-2011-19-3-104-115

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 61)
Language: 
Russian
Article type: 
Article
DOI: 
10.18500/0869-6632-2011-19-3-104-115

Modeling of cardiac activity on the basis of maps: dynamics of single element

Autors: 
Pavlov Evgenij Aleksandrovich, Federal state budgetary educational institution of higher professional education Nizhny Novgorod state University named N. And.Lobachevsky
Osipov Grigorij Vladimirovich, Federal state budgetary educational institution of higher professional education Nizhny Novgorod state University named N. And.Lobachevsky
Abstract: 

New computationally efficient model of cardiac activity is introduced. The model is a four­dimensional map based on well­known Luo–Rudy model. Capabilities of the model in replication of the basic cardiac cells’ properties are shown. Analysis of relationship between changes in individual parameters of the model and biophysical processes in real cardiac cells has been made. The model can reproduce two basic activity modes such as excitable and oscillatory regimes. Bifurcation mechanisms of transitions of between these regimes are investigated using phase space analysis. The dynamics of excitable cell on the external periodic action, including various types of synchronous response and hysteresis phenomenon, is investigated.

Key words: 
Reference: 

1. Hodgkin A.L., Huxley A.F. A quantitative description of membrane currents and its application to conduction and excitation in nerve // J. Physiol. 1952. Vol. 117. P. 500. 2. Bonhoeffer K.F. Modelle der nervenerregung // Naturwissenschaften. 1953. Vol. 40. P. 301. 3. Chialvo D.R. Generic excitable dynamics on a two-dimensional map // Chaos, Solitons, Fractals. 1995. Vol. 5. P. 461. 4. Noble D. A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pacemaker potential // J. Physiol. 1962. Vol. 160. P. 317. 5. Beeler G.W., Reuter H. Reconstruction of the action potential of ventricular myo-cardial fibers // J. Physiol. 1977. Vol. 268. P. 177. 6. Di Francesco D., Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes // Phil. Trans. R. Soc. Lond. 1985. Vol. 307. P. 353. 7. Luo C.H., Rudy Y. A model of the ventricular cardiac action potential, depolarization, repolarization and their interaction // Circ. Res. 1991. Vol. 68. P. 1501. 8. Ten Tusscher K.H., Noble D., Noble P.J., Panfilov A.V. A model for human ventricular tissue // Am. J. Physiol. 2004. Vol. 286. H1573. 9. Qu Z., Weiss J.N., Garfinkel A. From local to global spatiotemporal chaos in a cardiac tissue model // Phys. Rev. E. 2000. Vol. 61. P. 727. 10. Arce H., Lopez A., Guevara M. Triggered alternans in an ionic model of ischemic cardiac ventricular muscle // Chaos. 2002. Vol. 12. P. 807. 11. Alonso S., Panfilov A.V. Negative filament tension in the Luo–Rudy model of cardiac tissue // Chaos. 2007. Vol. 17. 015102. 12. Kanakov O.I., Osipov G.V., Chan C.K., Kurths J. Cluster synchronization and spatiotemporal dynamics in networks of oscillatory and excitable Luo–Rudy cells // Chaos. 2007. Vol. 17. 015111. 13. Kurata Y., Hisatome I., Matsuda H., Shibamoto T. Dynamical mechanisms of pacemaker generation in IK1-downregulated human ventricular myocytes: Insights from bifurcation analyses of a mathematical model // Biophys. J. 2005. Vol 89. 2865. 14. Silva J., Rudy Y. Mechanism of pacemaking in IK1-downregulated myocytes // Circ. Res. 2003. Vol. 92. P. 261. 15. Carmeliet E., Vereecke J. Adrenaline and the plateau phase of the cardiac action potential // Pflugers Arch. 1969. Vol. 313. P. 300. 16. Noble D., Noble S.J. A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble equations // Proc. R. Soc. Lond. B Biol. Sci. 1984. Vol. 222. P. 295. 17. Zhang H., Holden A.V., Kodama I., Honjo H., Lei M., Varghese T., Boyett M.R. Mathematical models of action potential in the periphery and center of the rabbit sinoatrial node // Am. J. Physiol. 2000. Vol. 279. H397.

Short text (in English):
(downloads: 61)