ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

Cite this article as:

Pavlov E. A., Osipov G. V. Modeling of cardiac activity on the basis of maps: ensembles of coupled elements. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 3, pp. 116-126. DOI:


Modeling of cardiac activity on the basis of maps: ensembles of coupled elements


The dynamics of coupled maps’ ensembles is investigated in the context of description of spatio­temporal processes in the myocardium. Particular, the dynamics of two coupled maps is explored as well as modeling the interaction of pacemaker (oscillatory) cell and myocyte (excitable cell), and the interation of two pacemakers. Setting of synchronous regime by increasing of coupling strength is considered through a coincidence of their characteristic time scales (characteristic frequencies). Effects of cluster and global synchronization in 1D and 2D lattices of oscillatory cells with a random distribution of individual frequencies are discussed. Impulse propagation in the chain of excitable cells has been observed. Analysis of 2D lattice of excitable elements with target and spiral waves has been made. The characteristics of the spiral wave have been analyzed in depending on the individual parameters of the map and coupling strength between elements of the lattice. Comparative results of computational efficiency with the mapbased model and original ODE model are presented.

Key words: 

1. Павлов Е.А., Осипов Г.В. Моделирование сердечной активности на основе отображений: Динамика одного элемента // Изв. вузов. Прикладная нелинейная динамика. 2011. Т. 19, No 3. С. 104. 2. Rohr S. Role of gap junctions in the propagation of the cardiac action potential // Cardiovasc. Res. 2004. Vol. 62. P. 309. 3. Joyner R.W., van Capelle F.J. Propagation through electrically coupled cells. How a small SA node drives a large atrium // Biophys. J. 1986. Vol. 50. P. 1157. 4. Jamaleddine R.S., Vinet A., Roberge F.A. New frequency entrainment scenario in a pair of cardiac cells coupled through a variable resistance (Proceedings of the 18th Annual International Conference of the IEEE Engineering) // Medicine and Biology Society. 1996. Vol. 3. P. 1270. 5. Henriquez A.P., Vogel R., Muller-Borer B.J., Henriquez C.S., Weinggart R., Cascio W.E. Influence of dynamic gap junction resistance on impulse propagation in ventricular myocardium: A computer simulation study // Biophys. J. 2001. Vol. 81. P. 2112. 6. Kleber A.G., Rudy Y. Basic mechanisms of cardiac impulse propagation and asso-ciated arrhythmias // Physiol. Rev. 2004. Vol. 84. P. 431. 7. Bernus O., Wilders R., Zemlin C.W., Verschelde H., Panfilov A.V. A computationally efficient electrophysiological model of human ventricular cells // Am. J. Physiol. 2002. Vol. 282. H2296. 8. Luo C.H., Rudy Y. A model of the ventricular cardiac action potential, depolarization, repolarization and their interaction // Circ. Res. 1991. Vol. 68. P. 1501. 9. Cherry E.M., Greenside H.S., Henriquez C.S. A space-time adaptive method for simulating complex cardiac dynamics // Phys. Rev. Lett. 2000. Vol. 84. P. 1343. 10. Qu Z., Garfinkel A. An advanced algorithm for solving partial differential equation in cardiac conduction // IEEE Trans. Biomed. Eng. 1999. Vol. 46. P. 1166.

Short text (in English):
(downloads: 5)
Full text:
(downloads: 15)