ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ezhov D. M., Kurbako A. V., Ponomarenko V. I., Prokhorov M. D. Modified FitzHugh-Nagumo oscillator with spiking activity dependent on the duration of external impulse action. Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, vol. 33, iss. 6, pp. 917-928. DOI: 10.18500/0869-6632-003193, EDN: IJPPGU

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
537.86
EDN: 

Modified FitzHugh-Nagumo oscillator with spiking activity dependent on the duration of external impulse action

Autors: 
Ezhov Dmitrii Maximovich, Saratov State University
Kurbako Aleksandr Vasilievich, Saratov State University
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Prokhorov Mihail Dmitrievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The purpose of the study is to develop and investigate a modified FitzHugh-Nagumo oscillator, the spiking activity of which is determined not only by the amplitude, but also by the duration of the external impulse signal applied to the input of the oscillator.

Methods. We have added an equation to the system of known equations describing the dynamics of the FitzHugh-Nagumo oscillator with a constant threshold parameter value. This additional equation describes the change in the threshold parameter over time under the influence of external impulse signals. For various values of the parameters of external impulses, a numerical study of the dynamics of the proposed oscillator, which is in a state of equilibrium in the absence of external influence, is carried out.

Results. It is shown that, unlike the classical FitzHugh-Nagumo oscillator, the modified oscillator is capable of demonstrating a sequence of several spikes in response to a single external impulse action, and the oscillator dynamics depends on both the amplitude and the duration of external impulses. In addition, the proposed oscillator can be excited by a sequence of impulses with an amplitude below the threshold.

Conclusion. The proposed modified FitzHughNagumo oscillator can be used to construct spiking neural networks. Learning of such networks can be implemented by changing synaptic connections by adjusting the synapse weights corresponding to the duration of external
impulse signals. The proposed modification of the FitzHugh-Nagumo oscillator can be implemented quite simply in a radio physical experiment using analog electronic elements and digital circuits regulating the duration of input impulses.
 

Acknowledgments: 
This study was supported by the Russian Science Foundation, Grant No. 23-12-00103, https://rscf.ru/project/23-12-00103/
Reference: 
  1. Yamazaki K, Vo-Ho V-K, Bulsara D, Le N. Spiking neural networks and their applications: A review. Brain Sciences. 2022;12(7):863 DOI: 10.3390/brainsci12070863.
  2. Dmitrichev AS, Кasatkin DV, Klinshov VV, Kirillov SYu, Maslennikov OV, Shchapin DS, Nekorkin V I. Nonlinear dynamical models of neurons. Izvestiya VUZ. Applied Nonlinear Dynamics. 2018;26(4):5-58 DOI: 10.18500/0869-6632-2018-26-4-5-58.
  3. Lazar A A. Time encoding with an integrate-and-fire neuron with a refractory period. Neurocomputing. 2004;58-60:53-58 DOI: 10.1016/j.neucom.2004.01.022.
  4. Hodgkin AL, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952;117(4):500-544. 10.1113/jphysiol.1952.sp00476410.1113/jphysiol.1952.sp004764.
  5. Kumar J, Gupta PD, Ghosh S. The role of nonlinear axonal membrane capacitance in modulating ion channel cooperativity in action potential dynamics: Studies on Hodgkin-Huxley's model. Biophys. Chem. 2025;319:107391 DOI: 10.1016/j.bpc.2025.107391.
  6. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 2025;319:107391 DOI: 10.1016/S0006-3495(81)84782-0.
  7. Hindmarsh JL, Rose R M. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B. Biol. Sci. 1984;221(1222):87-102 DOI: 10.1098/rspb.1984.0024.
  8. Storace M, Linaro D, Lange E. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos. 2008;18(3):033128 DOI: 10.1063/1.2975967.
  9. FitzHugh R. Impulses and physiological states in theoretical models of nerve membranes. Biophys. J. 1961;1:445-466 DOI: 10.1016/S0006-3495(61)86902-6.
  10. Dahlem MA, Hiller G, Panchuk A, Schöll E. Dynamics of delay-coupled excitable neural systems. Int. J. Bifurc. Chaos. 2009;19(2):745-753 DOI: 10.1142/S0218127409023111.
  11. Navrotskaya EV, Kulminskiy DD, Ponomarenko VI, Prokhorov M D. Estimation of impulse action parameters using a network of neuronlike oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(4):495-512 DOI: 10.18500/0869-6632-2022-30-4-495-512.
  12. Izhikevich E M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003;14(6):1569-1572 DOI: 10.1109/TNN.2003.820440.
  13. Rulkov N F. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E. 2002;65(4):041922 DOI: 10.1103/PhysRevE.65.041922.
  14. Courbage M, Nekorkin VI, Vdovin L V. Chaotic oscillations in a map-based model of neural activity. Chaos. 2007;17(4):043109 DOI: 10.1063/1.2795435.
  15. Mischenko MA, Shalfeev VD, Matrosov V V. Neuron-like dynamics in phase-locked loop. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(4):122-130 (in Russian) DOI: 10.18500/0869-6632-2012-20-4-122-130.
  16. Matrosov VV, Mishchenko MA, Shalfeev V D. Neuron-like dynamics of a phase-locked loop. Eur. Phys. J. Spec. Top. 2013;222:2399-2405 DOI: 10.1140/epjst/e2013-02024-9.
  17. Sysoev IV, Sysoeva MV, Ponomarenko VI, Prokhorov M D. Neural-like dynamics in a phase-locked loop system with delayed feedback. Tech. Phys. Lett. 2020;46(7):710-712. 10.1134/S106378502007028710.1134/S1063785020070287.
  18. Kipelkin IM, Gerasimova SA, Belov AI, Guseinov DV, Kruglov AV, Serov DA, Talanov MO, Mikhaylov AN, Kazantsev V B. Memristor-based model of neuronal excitability and synaptic potentiation. Front. Neurosci. 2024;18:1456386 DOI: 10.3389/fnins.2024.1456386.
  19. Glyzin DS, Glyzin SD, Kolesov AY u. A new approach to mathematical modeling of chemical synapses. Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(3):376-393 (in Russian) DOI: 10.18500/0869-6632-003099.
  20. Xu Y, Jia Y, Ma J, Alsaedi A, Ahmad B. Synchronization between neurons coupled by memristor. Chaos, Solitons and Fractals. 2017;104:435-442 DOI: 10.1016/j.chaos.2017.09.002.
  21. Gerasimova SA, Mikhaylov AN, Belov AI, Korolev DS, Gorshkov ON, Kazantsev V B. Simulation of synaptic coupling of neuron-like generators via a memristive device. Tech. Phys. 2017;62:1259-1265 DOI: 10.1134/S1063784217080102.
  22. Korneev IA, Semenov VV, Slepnev AV, Vadivasova T E. The impact of memristive coupling initial states on travelling waves in an ensemble of the FitzHugh-Nagumo oscillators. Chaos, Solitons and Fractals. 2021;147:110923 DOI: 10.1016/j.chaos.2021.110923.
  23. Stasenko SV, Mikhaylov AN, Fedotov AA, Smirnov VA, Kazantsev V B. Astrocyte control bursting mode of spiking neuron network with memristor-implemented plasticity. Chaos, Solitons and Fractals. 2024;181:114648 DOI: 10.1016/j.chaos.2024.114648.
  24. Navrotskaya EV, Kurbako AV, Ponomarenko VI, Prokhorov M D. Synchronisation of the ensemble of nonidentical FitzHugh-Nagumo oscillators with memristive couplings. Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):96-110 DOI: 10.18500/0869-6632-003085.
  25. Markram H, Gerstner W, Sjöström P J. Spike-timing-dependent plasticity: A comprehensive overview. Front. Synaptic Neurosci. 2012;4:2 DOI: 10.3389/fnsyn.2012.00002.
  26. Lobov SA, Chernyshov AV, Krilova NP, Shamshin MO, Kazantsev V B. Competitive learning in a spiking neural network: Towards an intelligent pattern classifier. Sensors. 2020;20(2):500 DOI: 10.3390/s20020500.
  27. Dong Y, Zhao D, Li Y, Zeng Y. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections. Neural Netw. 2023;165:799-808 DOI: 10.1016/j.neunet.2023.06.019.
  28. Rahman NA, Yusoff N. Modulated spike-time dependent plasticity (STDP)-based learning for spiking neural network (SNN): A review. Neurocomputing. 2025;618:129170. 10.1016/j.neucom.2024.12917010.1016/j.neucom.2024.129170.
  29. Sboev A, Vlasov D, Rybka R, Serenko A. Solving a classification task by spiking neu-rons with STDP and temporal coding. Procedia Computer Science. 2018;123:494-500. 10.1016/j.procs.2018.01.07510.1016/j.procs.2018.01.075.
  30. Diehl PU, Cook M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 2015;9:99 DOI: 10.3389/fncom.2015.00099.
  31. Kurbako AV, Ezhov DM, Ponomarenko VI, Prokhorov M D. Spike-timing dependent plasti-city learning of small spiking neural network for image recognition. Eur. Phys. J. Spec. Top. 2025;234:3659-3668 DOI: 10.1140/epjs/s11734-025-01512-3.
  32. Lobov SA, Mikhaylov AN, Shamshin M, Makarov VA, Kazantsev V B. Spatial properties of STDP in a self-learning spiking neural network enable controlling a mobile robot. Front. Neurosci. 2020;14:88 DOI: 10.3389/fnins.2020.00088.
  33. Egorov NM, Ponomarenko VI, Sysoev IV, Sysoeva M V. Simulation of epileptiform activity using network of neuron-like radio technical oscillators. Tech. Phys. 2021;66:505-514. 10.1134/S106378422103006310.1134/S1063784221030063.
  34. Egorov NM, Kulminskiy DD, Ponomarenko VI, Sysoev IV, Sysoeva M V. Transient dynamics in electronic neuron-like circuits in application to modeling epileptic seizures. Nonlinear Dynamics. 2022;108:4231-4242 DOI: 10.1007/s11071-022-07379-6.
  35. Egorov NM, Sysoeva MV, Ponomarenko VI, Kornilov MV, Sysoev I V. Ring generator of neuron-like activity with tunable frequency. Izvestiya VUZ. Applied Nonlinear Dynamics. 2023;31(1):103-120 DOI: 10.18500/0869-6632-003025.
  36. Annaswamy AM, Fradkov A L. A historical perspective of adaptive control and learn-ing. Annu. Rev. Contr. 2021;52:18-41 DOI: 10.1016/j.arcontrol.2021.10.014.
Received: 
03.06.2025
Accepted: 
02.09.2025
Available online: 
12.09.2025
Published: 
28.11.2025