ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Pozdnyakov M. V., Savin A. V. Multistable regimes in asymmetrically coupled period-­doubling systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 5, pp. 44-53. DOI: 10.18500/0869-6632-2010-18-5-44-53

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 129)
Article type: 

Multistable regimes in asymmetrically coupled period-­doubling systems

Pozdnyakov Mihail Valerevich, Saratov State University
Savin Aleksej Vladimirovich, Saratov State University

Multistable regimes in asymmetrically coupled logistic maps are investigated. The evolution of the multistability regions in the parameter plane and the basins of coexisting attractors are revealed.

  1. Anishchenko VS, Vadivasova TE, Astakhov VV. Nonlinear dynamics of chaotic and stochastic systems. Saratov: Saratov Univ. Publ.; 1999. 368 p. (in Russian).
  2. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev YP. Types of oscillations and their evolution in dissipatively-related Feigenbaum systems. Tech. Phys. 1990;60(10):19–26 (in Russian).
  3. Astakhov VV, Bezruchko BP, Gulyaev YV, Seleznev EP. Multistable states of dissipatively-connected Feigenbaum systems. Tech. Phys. Lett. 1988;15(3):60–65 (in Russian).
  4. Bezruchko BP, Seleznev EP. Basins of attraction for chaotic attractors in coupled systems with period doubling. Tech. Phys. Lett. 1997;23(2):144–146. DOI: 10.1134/1.1261565.
  5. Feudel U. Complex dynamics in multistable systems. International Journal of Bifurcation and Chaos. 2008;18(6):1607–1626. DOI: 10.1142/S0218127408021233.
  6. Fujisaka H, Yamada Y. Stability theory of synchronized motions in coupled oscillatory systems. Progr. Theor. Phys. 1983;69:32–47. DOI: 10.1143/PTP.69.32.
  7. Postnov DE, Vadivasova ТЕ, Sosnovstseva OV, Balanov AG, Mosekilde E. Role of multistability in the transition to chaotic phase synchronization. Chaos. 1999;9:227–232. DOI: 10.1063/1.166394.
  8. Vadivasova TE, Sosnovtseva OV, Balanov AG, Astakhov VV. Phase multistability of synchronous chaotic oscillations. Discrete dynamics in Society and Nature. 2000;4:231–243. DOI: 10.1155/S1026022600000224.
  9. Sosnovtseva OV, Postnov DE, Nekrasov AM, Mosekilde E, Holstein-Rathlou NH. Phase multistability of self-modulated oscillators. Phys. Rev. E. 2002;66:0362. DOI: 10.1103/PhysRevE.66.036224.
  10. Postnov DE, Nekrasov AM. Mechanisms of phase multistability development in interacting 3D-oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(1):47–62 (in Russian). DOI: 10.18500/0869-6632-2005-13-1-47-62.
  11. Kuznetsov SP. Critical behavior of one-dimensional chains. Sov. Tech. Phys. Lett. 1983;9:94–98 (in Russian).
  12. Kuznetsov SP. Dynamic Chaos. Moscow: Fizmatlit; 2006. 356 p. (in Russian).
  13. Feudel U, Grebogi C, Hunt BR, Yorke JA. Map with more than 100 coexisting low-period periodic attractors. Phys. Rev. E. 1996;54(1):71–81. DOI: 10.1103/physreve.54.71.
  14. Kuznetsov AP, Savin AV, Savin DV. Features in dynamics of an almost conservative Ikeda map. Technical Physics Letters. 2007;33(2):122–124. DOI: 10.1134/S1063785007020095.
Short text (in English):
(downloads: 57)