ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


multistability

Approaches to study of multistability in spatio-temporal dynamics of two-age population

Purpose of the work is to study spatio-temporal dynamics of limited two-age structured populations that populate a 2D habitat and capable of long-range displacement of individuals. We proposed the model that is the network of nonlocally coupled nonlinear maps with nonlinear coupling function. Conditions for the emergence of different types of heterogeneous spatial distribution, combining coherent and incoherent regimes in different sites and solitary states are studied. Methods.

Multistability and memory effects in dynamical system with cosymmetric potential

The purpose of present study is the analysis of strong multistability in a dynamical system with cosymmetry. We study the dynamics and realization of steady-states in a mechanical system with two degrees of freedom. The minimum potential energy of the system is achieved on a curve in the form of an ellipse, which gives rise to a continuum family of equilibria and strong multistability. This problem belongs to the class of dynamical systems with cosymmetry. Methods.

Strange waves in the ensemble of van der Pol oscillators

The purpose of this paper is to study the processes of spatial disorder and the development of phase multistability in a discrete medium of anharmonic oscillators. Methods. An ensemble of diffusively coupled van der Pol oscillators is used as a model of discrete anharmonic medium. The model is investigated by numerical simulation; its phase dynamics is studied. The formed spatial structures are visualized by means of phase difference distribution. Results.

Dynamics of weakly dissipative self-oscillatory system at external pulse influence, which amplitude is depending polynomially on the dynamic variable

Topic and aim. In this work, we study the dynamics of the kicked van der Pol oscillator with the amplitude of kicks depending nonlinearly on the dynamic variable. We choose the expansions of the function cos x in a Taylor series near zero, as functions describing this dependence.

Dynamic regimes and multistability in the system of non-symmetrically coupled two-dimensional maps with period-doubling and Neimark–Sacker bifurcations

The phenomenon of multistability in the system of coupled universal two-dimensional maps which shows period-doubling and Neimark–Sacker bifurcations is investigated. The decreasing of possible coexisting attractors number, the evolution of the attractor basins, the disappearance of hyperchaos and three-dimensional torus while putting coupling asymmetry are exposed.

Period doubling bifurcations and noise excitation effects in a multistable self-sustained oscillatory medium

The model of a self-oscillatory medium composed from the elements with complex self-oscillatory behavior is studied. Under periodic boundary conditions the stable selfoscillatory regimes in the form of traveling waves with different phase shifts are coexisted in medium. The study of mechanisms of the oscillations period doubling in time is performed for different coexisted modes. For all observed spatially-non-uniform regimes (traveling waves) the period doubling occurs through the appearance of time-quasiperiodic oscillations and their further evolution.

External synchronization of traveling waves in an active medium in self-sustained and excitable regime

The model of a one-dimensional active medium, which cell represents FitzHugh–Nagumo oscillator, is studied with periodical boundary conditions. Such medium can be either self-oscillatory or excitable one in dependence of the parameters values. Periodical boundary conditions provide the existence of traveling wave regimes both in excitable anself-oscillatory case without any deterministic or stochastic impacts.

Multistability in dynamical small world networks

We explore phase multistability which takes place in an ensemble of periodic oscillators under the action of long-distance couplings, which appear randomly between the arbitrary cells. The  system under study is Kuromoto’s model with additional dynamical interconnections between phase oscillators. The sequence of bifurcations, which accompany increasing of the strength of the global coupling is determined. Regions of multistability existance are defined.

Synchronizing the period-­2 cycle in the system of symmetrical coupled populations with stock–recruitment based on the Ricker population model

We investigated coupled map lattices based on the Ricker model that describes the spatial dynamics of heterogeneous populations represented by two connected groups of individuals with a migration interaction between them. Bifurcation mechanisms in­phase and antiphase synchronization of multistability regimes were considered in such systems. To identify a synchronization mode we introduced the quantitative measure of synchronization.

Phase multistability in an array of period-doubling self­sustained oscillators

Regularities of multistability developments are considered in an array of identical self-sustained oscillators with transition to chaos through period-doubling bifurcations. The used model is chain of diffusivelly coupled Rossler oscillators. The number of coexisting regimes are determined through the cascade of the bifurcations. It is shown that regularities of incresing of attractors are defined be transformation of the phase spectrum duing transition to chaos.

Pages