ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Vadivasova T. E., Zaharova A. S., Anishchenko V. S. Noise-induced bifurcations in bistable oscillator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 2, pp. 114-122. DOI: 10.18500/0869-6632-2009-17-2-114-122

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 138)
Article type: 

Noise-induced bifurcations in bistable oscillator

Vadivasova Tatjana Evgenevna, Saratov State University
Zaharova Anna Sergeevna, Technische Universitßt Berlin
Anishchenko Vadim Semenovich, Saratov State University

We investigate bistable oscillator under the influence of additive, white and colored, noise. We have found noise-induced bifurcations that consist in a qualitative change of stationary distribution of oscillations amplitude. In the region of bimodal distribution the effect of coherent resonance takes place both for white and colored noise.

  1. Horsthemke W, Lefever R. Noise-Induced Transitions. Moscow: Mir; 1987. 400 p. (In Russian).
  2. Bulsara AR, Schieve WC, Gragg RF. Phase transitions induced by white noise in bistable optical systems. Phys. Lett. A. 1978;68:294–296.
  3. Anishchenko VS, Safonova MA. Noise-induced exponential dispersion of phase trajectories near regular attractors. Pisma v Zhurnal Tekhnicheskoi Fiziki. 1986;12(12):740–744.
  4. Sigeti D, Horsthemke W. Pseudo-regular oscillations induced by external noise. J.Stat.Phys. 1989;54(5):1217–1222.
  5. Schimansky-Geier L, Herzel H. Positive Lyapunov exponents in the Kramers oscillator. Journal of Statistical Physiks. 1993;70:141–147. DOI: 10.1007/BF01053959.
  6. Armbruster D, Stone E, Kirk V. Noisy heterodinic networks. Chaos. 2003;13(1):71–86.
  7. Finn JM, Tracy ER, Cooke WE, Richardson AS. Noise stabilised random attractor. Phys. Rev. E. 2006;73(2):026220(12). DOI: 10.1103/PhysRevE.73.026220.
  8. Arnold L. Random Dynamical System. Berlin: Springer; 2003. 586 p.
  9. Ushakov OV, Wunsche H-J. et al. Coherence resonance near a Hopf bifurcation. Phys. Rev. Lett. 2005;95(12):123903(4). DOI: 10.1103/PhysRevLett.95.123903.
  10. Landa PS. Self-oscillations in systems with a finite number of degrees of freedom. Moscow: Nauka; 1980. 359 p. (In Russian).
  11. Stratonovich RL. Selected issues of the theory of fluctuations in radio engineering. Moscow: Sovetskoe radio; 1961. 558 p. (In Russian).
  12. Ventzel AD, Freidlin MI. Fluctuations in dynamic systems under the influence of small random disturbances. Moscow: Nauka; 1979. 424 p. (In Russian).
  13. Pikovsky A, Kurths J. Coherence resonance in a noisy driven excitable system. Phys. Rev. Lett. 1997;78(5):775–778. DOI: 10.1103/PHYSREVLETT.78.775.
Short text (in English):
(downloads: 81)