ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Vadivasova T. E., Zaharova A. S., Anishchenko V. S. Noise-induced bifurcations in bistable oscillator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 2, pp. 114-122. DOI: 10.18500/0869-6632-2009-17-2-114-122

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 153)
Language: 
Russian
Article type: 
Article
UDC: 
537.86:621.373

Noise-induced bifurcations in bistable oscillator

Autors: 
Vadivasova Tatjana Evgenevna, Saratov State University
Zaharova Anna Sergeevna, Technische Universitßt Berlin
Anishchenko Vadim Semenovich, Saratov State University
Abstract: 

We investigate bistable oscillator under the influence of additive, white and colored, noise. We have found noise-induced bifurcations that consist in a qualitative change of stationary distribution of oscillations amplitude. In the region of bimodal distribution the effect of coherent resonance takes place both for white and colored noise.

Reference: 
  1. Horsthemke W, Lefever R. Noise-Induced Transitions. Moscow: Mir; 1987. 400 p. (In Russian).
  2. Bulsara AR, Schieve WC, Gragg RF. Phase transitions induced by white noise in bistable optical systems. Phys. Lett. A. 1978;68:294–296.
  3. Anishchenko VS, Safonova MA. Noise-induced exponential dispersion of phase trajectories near regular attractors. Pisma v Zhurnal Tekhnicheskoi Fiziki. 1986;12(12):740–744.
  4. Sigeti D, Horsthemke W. Pseudo-regular oscillations induced by external noise. J.Stat.Phys. 1989;54(5):1217–1222.
  5. Schimansky-Geier L, Herzel H. Positive Lyapunov exponents in the Kramers oscillator. Journal of Statistical Physiks. 1993;70:141–147. DOI: 10.1007/BF01053959.
  6. Armbruster D, Stone E, Kirk V. Noisy heterodinic networks. Chaos. 2003;13(1):71–86.
  7. Finn JM, Tracy ER, Cooke WE, Richardson AS. Noise stabilised random attractor. Phys. Rev. E. 2006;73(2):026220(12). DOI: 10.1103/PhysRevE.73.026220.
  8. Arnold L. Random Dynamical System. Berlin: Springer; 2003. 586 p.
  9. Ushakov OV, Wunsche H-J. et al. Coherence resonance near a Hopf bifurcation. Phys. Rev. Lett. 2005;95(12):123903(4). DOI: 10.1103/PhysRevLett.95.123903.
  10. Landa PS. Self-oscillations in systems with a finite number of degrees of freedom. Moscow: Nauka; 1980. 359 p. (In Russian).
  11. Stratonovich RL. Selected issues of the theory of fluctuations in radio engineering. Moscow: Sovetskoe radio; 1961. 558 p. (In Russian).
  12. Ventzel AD, Freidlin MI. Fluctuations in dynamic systems under the influence of small random disturbances. Moscow: Nauka; 1979. 424 p. (In Russian).
  13. Pikovsky A, Kurths J. Coherence resonance in a noisy driven excitable system. Phys. Rev. Lett. 1997;78(5):775–778. DOI: 10.1103/PHYSREVLETT.78.775.
Received: 
25.06.2008
Accepted: 
03.03.2009
Published: 
30.06.2009
Short text (in English):
(downloads: 85)