For citation:
Zemlyanukhin A. I., Mogilevich L. I. Nonlinear deformation waves in cylindrical shells. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 1, pp. 52-58. DOI: 10.18500/0869-6632-1995-3-1-52-58
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Heading:
Article type:
Article
UDC:
534.222:539.3
Nonlinear deformation waves in cylindrical shells
Autors:
Zemlyanukhin Aleksandr Isaevich, Yuri Gagarin State Technical University of Saratov
Mogilevich Lev Ilyich, Yuri Gagarin State Technical University of Saratov
Abstract:
The evolution of nonlinear fongitudinal waves in elastic and nonlinear-elastic cylindrical shells has been analysed. In elastic shells one-dimensional and twodimensional solitons of the equations KdV and Kadomtsev - Petviashvili have been геvealed. It was demonstrated that there exist one-dimensional solitons of the equation mKdV in nonlinear-elastic shells. Calculation of dissipation effects allowed to get integrable evolution equations for the longitudinal deformation component.
Key words:
Reference:
- Potapov АI. Nonlinear Waves of Deformation in Rods and Plates. Gorky: Gorky University Publishing; 1985. 107 p.
- Kivshar YuS, Syrkin ES. Shear solitons in an elastic plate. Acoust. Phys. 1991;37(1):104-109.
- Volmir АS. Nonlinear Dynamics of Plates and Shells. М.: Nauka; 1972. 432 p.
- Zemlyanukhin АI, Mogilevich LI. Evolution of nonlinear longitudinal waves in cylindrical shells. Saratov; 1993. 45 p. Archived in Russian Institute for Scientific and Technical Information, No. 1737 - B93.
- Whitham GB. Linear and Nonlinear Waves. N.Y.: Wiley; 1999. 660 p.
- Batdorf SBA. А simplified method of elastic stability analysis for thin cylindrical shells. 1. Donnell’s equations. NACA Tech. Note. No. 1341. Washington; 1947.
- Cole JD. Perturbation Methods in Applied Mathematics. Waltham: Blaisdell Publishing; 1968. 260 p.
- Bogoyavlenskii ОI. Overturning Solitons. М.: Nauka; 1991. 319 p.
- Ablowitz MJ, Segur H. Solitons and the Inverse Scattering Transform. Philadelfia: SIAM; 1981. 424 p. DOI: 10.1137/1.9781611970883.
Received:
19.09.1994
Accepted:
16.02.1995
Published:
15.09.1995
Journal issue:
- 269 reads