ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Alekseev K. N., Balanov A. G., Koronovskii A. A., Maksimenko V. A., Moskalenko O. I., Hramov A. E. Nonlinear dynamics of small perturbation of semiconductor superlattice reference state near generation threshold. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 5, pp. 165-178. DOI: 10.18500/0869-6632-2012-20-5-165-178

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 111)
Article type: 
517.9, 530.182, 621.38

Nonlinear dynamics of small perturbation of semiconductor superlattice reference state near generation threshold

Alekseev Kirill Nikolaevich, Loughborough University
Balanov Aleksandr Gennadevich, Loughborough University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Maksimenko Vladimir Aleksandrovich, Immanuel Kant Baltic Federal University
Moskalenko Olga Igorevna, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University

Present research is focused on the dynamics of the perturbation of semiconductor superlattice (SL) reference state near the generation threshold as for the case of influence of titled magnetic field as for the case when the magnetic field is absent. The evolution of the considered perturbation is described with the help of linearized evolution operator. It has been shown that increase of the applied voltage leads to decrease of the attenuation coefficient, which becomes zero in bifurcation point where stationary state loses it’s stability. Meanwhile, the applied titled magnetic field has an strong effect on the perturbation dynamics, value of applied voltage corresponding to the threshold point and the frequency of arising current oscillations.

  1. Esaki L, Tsu R. Superlattices and negative differential conductivity in semiconductors. IBM Journal of Research and Development. 1970;14(1):61–65. DOI: 10.1147/rd.141.0061.
  2. Romanov YA. On nonlinear effects in periodic semiconductor structures. Optics and Spectroscopy. 1972;33(5):917–920 (in Russian).
  3. Mourokh LG, Horing NJM, Romanov YA, Romanova JY. Nonlinear terahertz oscillations in a semiconductor superlattice. Journal of Applied Physics. 2001;89(7):3835–3840. DOI: 10.1063/1.1350978.
  4. Horing NJM, Lei XL, Cui HL. Theory of negative differential conductivity in a superlattice miniband. Phys. Rev. Lett. 1991;66(25):3277–3280. DOI: 10.1103/PhysRevLett.66.3277.
  5. Romanov YA, Demidov EV. Nonlinear conductivity and current-voltage characteristics of two-dimensional semiconductor superlattices. Semiconductors. 1997;31(3):252–254. DOI: 10.1134/1.1187120.
  6. Romanov YA, Romanova YY. Self-oscillations in semiconductor superlattices. J. Exp. Theor. Phys. 2000;91(5):1033–1045. DOI: 10.1134/1.1334994.
  7. Greenaway MT, Balanov AG, Scholl E, Fromhold TM. Controlling and enhancing terahertz collective electron dynamics in superlattices by chaos-assisted miniband transport. Phys. Rev. B. 2009;80(20):205318. DOI: 10.1103/PhysRevB.80.205318.
  8. Hyart T, Mattas J, Alekseev KN. Model of the influence of an external magnetic field on the gain of terahertz radiation from semiconductor superlattices. Phys. Rev. Lett. 2010;103(11):117401. DOI: 10.1103/PhysRevLett.103.117401.
  9. Piskarev VI, Sinitsyn MA, Shashkin VI, Yavich BS, Yakovlev ML, Belyantsev AM, Ignatov AA. New nonlinear high-frequency effects and s-type NDC in multilayer heterostructures. Sov. Tech. Phys. Lett. 1986;43(7):339–341 (in Russian).
  10. Ignatov АА, Romanov YA. Nonlinear electromagnetic properties of semiconductors with superlattice. Phys. St. Sol. 1976;73(1):327–333. DOI: 10.1002/pssb.2220730132.
  11. Romanov YA, Romanova YY. Bloch oscillations in superlattices: The problem of a terahertz oscillator. Semiconductors. 2005;39(1):147–155. DOI: 10.1134/1.1852666.
  12. Zinchenko DI, Nozdrin YN, Andronov AA, Dodin EP. Transport in gaas/alxga1-xas superlattices with narrow forbidden minibands: Low-frequency negative differential conductivity and current oscillations. Semiconductors. 2009;43(2):248–256 (in Russian).
  13. Balanov AG, Fowler D, Patane A, Eaves L, Fromhold TM. Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field. Phys. Rev. E. 2008;77(2):026209. DOI: 10.1103/PhysRevE.77.026209.
  14. Selskii AO, Koronovskii AA, Hramov AE, Moskalenko OI, Alekseev KN, Greenaway MT, Wang F, Fromhold TM, Shorokhov AV, Khvastunov NN, Balanov AG. Effect of temperature on resonant electron transport through stochastic conduction channels in superlattices. Phys. Rev. B. 2011;84(23):235311. DOI: 10.1103/PhysRevB.84.235311.
  15. Fromhold TM, Patane A, Bujkiewicz S, Wilkinson PB, Fowler D, Sherwood D, Stapleton SP, Krokhin AA, Eaves L, Henini M, Sankeshwar NS, Sheard FW. Chaotic electron diffusion through stochastic webs enhances current flow in superlattices. Nature. 2004;428(6984):726–730. DOI: 10.1038/nature02445.
  16. Wacker R. Semiconductor superlattices: A model system for nonlinear transport. Physics Reports. 2002;357(1):1–111. DOI: 10.1016/S0370-1573(01)00029-1.
  17. Bonilla LL, Teitsworth SW. Nonlinear Wave Methods for Charge Transport. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; 2009. 287 p.
  18. Balanov AG, Koronovskii AA, Selskij AO, Hramov AE. Temperature effect on drift velocity of electrons in superlattice in electric and tilted magnetic fields. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(3):128–139 (in Russian). DOI: 10.18500/0869-6632-2010-18-3-128-139.
  19. Wacker A. Semiconductor superlattices: A model system for nonlinear transport. Physics Reports. 2002;357(1):1–111. DOI: 10.1016/S0370-1573(01)00029-1.
  20. Raspopin AS, Zharov AA, Cui HL. Spectrum of electromagnetic excitations in a dc-biased semiconductor superlattice. Journal of Applied Physics. 2005;98(10):103517. DOI: 10.1063/1.2135413.  
Short text (in English):
(downloads: 91)