ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Ryskin N. M., Rozhnev A. G., Ginzburg N. S., Zotova I. V. Nonlinear dynamics of the backward-wave oscillator as the origin of nonstationary microwave electronics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2021, vol. 29, iss. 4, pp. 480-514. DOI: 10.18500/0869-6632-2021-29-4-480-514

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 745)
Language: 
Russian
Article type: 
Review
UDC: 
530.182

Nonlinear dynamics of the backward-wave oscillator as the origin of nonstationary microwave electronics

Autors: 
Ryskin Nikita Mikhailovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Rozhnev Andrej Georgievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Ginzburg Naum Samuilovich, Institute of Applied Physics of the Russian Academy of Sciences
Zotova Irina V, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

Aim. This article presents a review of the non-stationary nonlinear phenomena in backward-wave oscillators (BWO). Methods. Numerical modeling using the nonstationary (time-domain) 1-D, 2-D, and 2-D nonlinear theory of electron beam interaction with a backward electromagnetic wave in the slowly varying amplitude approximation. Results. Main results of nonstationary nonlinear theory of O-type and M-type BWO are presented. The typical bifurcation scenario is described, which is observed with an increase of electron beam current in numerical simulations as well as in experiments. Different kinds of chaotic behavior are demonstrated. Nonstationary phenomena in BWOs with oversized electromagnetic systems are discussed, namely, the diffractive mode selection as well as the generation of Cherenkov superradiance pulses by short electron bunches. Conclusion. The nonstationary nonlinear theory is a powerful tool for modeling of beam-wave in BWO as well as in other microwave tubes. Using this theory, algorithms and computer codes for time-domain simulation have been developed, which are widely used in fundamental and applied research. These codes not only provide analysis of different modes of interaction in existing electron devices, but also allow to propose and analyze new schemes for which the standard stationary approach is ineffective.

Acknowledgments: 
The work was carried out within the framework of the state tasks of Saratov Brunch of Kotelnikov Institute of Radioengineering and Electronics RAS and Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (№ 0035-2019-0001)
Reference: 
  1. Kuznetsov SP, Trubetskov DI. Two lectures on the nonstationary theory of electron beam interaction with electromagnetic waves. In: Lectures on Microwave Electronics. (3rd Winter School–Seminar for Engineers). Book 5. Saratov: Saratov State University Publishing House; 1974. P. 88–142 (in Russian).
  2. Shevchik VN, Trubetskov DI, editors. Electronics of Backward-Wave Oscillators. Saratov: Saratov State University Publishing House; 1975. 195 p. (in Russian).
  3. Kuznetsov SP, Trubetskov DI. Nonlinear transients during interaction between the electron beam moving in crossed fields and the backward electromagnetic wave. Radiophys. Quantum Electron. 1977;20(2):204–213. DOI: 10.1007/BF01034210.
  4. Ginzburg NS, Kuznetsov SP, Fedoseeva TN. Theory of transients in relativistic backward wave tubes. Radiophys. Quantum Electron. 1978;21(7):728–739. DOI: 10.1007/BF01033055.
  5. Bezruchko BP, Bulgakova LV, Kuznetsov SP, Trubetskov DI. Experimental and theoretical study of stochastiс self-oscillations in a backward-wave oscillator. In: Lectures on Microwave Electronics and Radiophysics. (5th Winter School–Seminar for Engineers). Book 5. Saratov: Saratov State University Publishing House; 1980. P. 25–77 (in Russian).
  6. Bezruchko BP, Kuznetsov SP. Experimental investigation of nonlinear nonstationary processes in a typeO backward-wave tube oscillator. Radiophys. Quantum Electron. 1978;21(7):739–744. DOI: 10.1007/BF01033056.
  7. Bezruchko BP, Kuznetsov SP, Trubetskov DI. Experimental observation of stochastic self oscillations in the electron beam-backscattered electromagnetic wave dynamic system. JETP Letters. 1979;29(3):162–165.
  8. Bezruchko BP, Bulgakova LV, Kuznetsov SP, Trubetskov DI. Stochastic self-oscillations and instability in a backward wave tube. Radio Engineering and Electronic Physics. 1983;28(6):76–80.
  9. Trubetskov DI, Chetverikov AP. Oscillations in extended systems «electron beam – backward electromagnetic waves». Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(5):9–34 (in Russian).
  10. Kuznetsov SP. Nonlinear dynamics of backward-wave tube: self-modulation, multi-stability, control. Izvestiya VUZ. Applied Nonlinear Dynamics. 2006;14(4):3–35 (in Russian). DOI: 10.18500/0869-6632-2006-14-4-3-35.
  11. Kuznetsov AP, Kuznetsov SP. Nonlinear nonstationary equation of interaction between an electron beam and electromagnetic field near the Brillouin zone boundary. Radiophys. Quantum Electron. 1984;27(12):1099–1105. DOI: 10.1007/BF01039225.
  12. Ginzburg NS, Nusinovich GS, Zavolsky NA. Theory of non-stationary processes in gyrotrons with low Q resonators. International Journal of Electronics. 1986;61(6):881–894. DOI: 10.1080/00207218608920927.
  13. Bunkin BV, Gaponov-Grekhov AV, Elchaninov AS, Zagulov FY, Korovin SD, Mesyats GA, Osipov ML, Otlivanchik EA, Petelin MI, Prokhorov AM, Rostov VV, Saraev AP, Sisakyan IP, Smorgonskiy AV, Suvorov VA. Radar based on UHF-generator with relativistic electron-beam. Sov. Tech. Phys. Lett. 1992;18(9):61–65 (in Russian).
  14. Ginzburg NS, Novozhilova NY, Zotova IV, Sergeev AS, Peskov NY, Phelps ADR, Wiggins SM, Cross AW, Ronald K, He W, Shpak VG, Yalandin MI, Shunailov SA, Ulmaskulov MR, Tarakanov VP. Generation of powerful subnanosecond microwave pulses by intense electron bunches moving in a periodic backward wave structure in the superradiative regime. Phys. Rev. E. 1999;60(3):3297–3304. DOI: 10.1103/PhysRevE.60.3297.
  15. Korovin SD, Eltchaninov AA, Rostov VV, Shpak VG, Yalandin MI, Ginzburg NS, Sergeev AS, Zotova IV. Generation of Cherenkov superradiance pulses with a peak power exceeding the power of driving short electron beam. Phys. Rev. E. 2006;74(1):016501. DOI: 10.1103/PhysRevE.74.016501.
  16. Mesyats GA, Yalandin MI. High-power picosecond electronics. Physics-Uspekhi. 2005;48(3):211– 229. DOI: 10.1070/PU2005v048n03ABEH002113.
  17. Deacon DAG, Elias LR, Madey JMJ, Ramian GJ, Schwettman HA, Smith TI. First operation of a free-electron laser. Phys. Rev. Lett. 1977;38(16):892–894. DOI: 10.1103/PhysRevLett.38.892.
  18. Bogomolov YL, Bratman VL, Ginzburg NS, Petelin MI, Yunakovsky AD. Nonstationary generation in free electron lasers. Optics Communications. 1981;36(3):209–212. DOI: 10.1016/0030-4018(81)90359-X.
  19. Dumbrajs O, Nusinovich GS. Azimuthal instability of radiation in gyrotrons with overmoded resonators. Phys. Plasmas. 2005;12(5):053106. DOI: 10.1063/1.1900603.
  20. Ginzburg NS, Malkin AM, Zheleznov IV, Zaslavsky VY, Sergeev AS. Stimulated Cherenkov radiation of a relativistic electron beam moving over a periodically corrugated surface (quasioptical theory). J. Exp. Theor. Phys. 2013;117(6):975–987. DOI: 10.1134/S1063776113140124.
  21. Ginzburg NS, Peskov NY, Sergeev AS, Phelps ADR, Konoplev IV, Robb GRM, Cross AW, Arzhannikov AV, Sinitsky SL. Theory and design of a free-electron maser with two-dimensional feedback driven by a sheet electron beam. Phys. Rev. E. 1999;60(1):935–945. DOI: 10.1103/PhysRevE.60.935.
  22. Ginzburg NS, Peskov NY, Sergeev AS, Zaslavskij VJ, Arzhannikov AV, Sinitsky SL. Two-dimensional distributed feedback as a method for generation of powerful coherent radiation from spatially-extended relativistic electron beams. Izvestiya VUZ. Applied Nonlinear Dynamics. 2020;28(6):575–632 (in Russian). DOI: 10.18500/0869-6632-2020-28-6-575-632.
  23. Ginzburg NS, Zotova IV. Microwave electronics as art of energy flows manipulation. Izvestiya VUZ. Applied Nonlinear Dynamics. 2012;20(5):51–83 (in Russian). DOI: 10.18500/0869-6632-2012-20-5-51-83.
  24. Antonsen TM, Levush B. Mode competition and suppression in free electron laser oscillators. Physics of Fluids B: Plasma Physics. 1989;1(5):1097–1108. DOI: 10.1063/1.858980.
  25. Miller SM, Antonsen TM, Levush B, Bromborsky A, Abe DK, Carmel Y. Theory of relativistic backward wave oscillators operating near cutoff. Phys. Plasmas. 1994;1(3):730–740. DOI: 10.1063/1.870818.
  26. Ginzburg NS, Malkin AM, Sergeev AS, Zotova IV, Zaslavsky VY, Zheleznov IV. 3D quasioptical theory of terahertz superradiance of an extended electron bunch moving over a corrugated surface. Phys. Rev. Lett. 2013;110(18):184801. DOI: 10.1103/PhysRevLett.110.184801.
  27. Vainshtein LA, Solntsev VA. Lectures on Microwave Electronics. Moscow: Sovetskoe Radio; 1973. 400 p. (in Russian).
  28. Vainshtein LA. Transient processes of excitation of waveguides. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(1):21–24 (in Russian).
  29. Kats AM, Il’ina EM, Man’kin IA. Nonlinear Phenomena in O-Type Microwave Devices with Long-Term Interaction. Moscow: Sovetskoe Radio; 1975. 296 p. (in Russian).
  30. Shevchik VN, Trubetskov DI. Analytical Methods of Calculation in Microwave Electronics. Moscow: Sovetskoe Radio; 1970. 584 p. (in Russian).
  31. Bocharov EP, Gavrilov MV, Levin YI, Sokolov DV, Trubetskov DI, Sharaevskii YP. Theory of magnetron-type electron beam tubes. In: Lectures on Microwave Electronics. (2nd Winter School–Seminar for Engineers). Book 5. Saratov: Saratov State University Publishing House; 1972 (in Russian).
  32. Feinstein J, Kino GS. The large-signal behavior of crossed-field traveling-wave devices. Proc. IRE. 1957;45(10):1364–1373. DOI: 10.1109/JRPROC.1957.278222.
  33. Ryskin NM, Trubetskov DI. Nonlinear Waves. Moscow: LENAND; 2017. 312 p. (in Russian).
  34. Rabinovich MI, Trubetskov DI. Oscillations and Waves in Linear and Nonlinear Systems. Netherlands: Springer; 1989. 578 p. DOI: 10.1007/978-94-009-1033-1.
  35. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear Oscillations. Moscow: LENAND; 2020. 352 p. (in Russian).
  36. Kuznetsov SP. Dynamical Chaos. Moscow: FIZMATLIT; 2001. 296 p. (in Russian).
  37. Ryskin NM, Titov VN, Trubetskov DI. Transition to chaotic regime in a system composed of an electron beam and an inverse electromagnetic wave. Doklady Physics. 1998;43(2):90–93.
  38. Ryskin NM, Titov VN. On the transition to chaos scenario in one parameter model of a backward wave oscillator. Izvestiya VUZ. Applied Nonlinear Dynamics. 1998;6(1):75–92 (in Russian).
  39. Ryskin NM, Titov VN. Nonlinear dynamics of the backward–wave oscillator. J. Commun. Technol. Electron. 2000;45(Suppl. 1):S46–S52.
  40. Ryskin NM, Titov VN. Self-modulation oscillatory modes in a relativistic backward-wave oscillator. Radiophys. Quantum Electron. 1999;42(6):500–505. DOI: 10.1007/BF02677588.
  41. Kuznetsov SP, Trubetskov DI. Chaos and hyperchaos in a backward-wave oscillator. Radiophys. Quantum Electron. 2004;47(5–6):341–355. DOI: 10.1023/B:RAQE.0000046309.49269.af.
  42. Blokhina EV, Kuznetsov SP, Rozhnev AG. High-dimensional chaos in a gyrotron. IEEE Trans. Electron Devices. 2007;54(2):188–193. DOI: 10.1109/TED.2006.888757.
  43. Rozental RM, Isaeva OB, Ginzburg NS, Zotova IV, Sergeev AS, Rozhnev AG, Tarakanov VP. Automodulation and chaotic regimes of generation in a two-resonator gyroklystron with delayed feedback. Izvestiya VUZ. Applied Nonlinear Dynamics. 2018;26(3):78–98 (in Russian). DOI: 10.18500/0869-6632-2018-26-3-78-98.
  44. Kovalev NF, Petelin MI. Mode selection in high-frequency relativistic electron generators with distributed interaction. In: Relativistic High-Frequency Electronics. Problems of Increase of Power and Frequency of Radiation. Gorky: Institute of Applied Physics of the USSR Academy of Sciences; 1981. P. 62–100 (in Russian).
  45. Rehler NE, Eberly JH. Superradiance. Phys. Rev. A. 1971;3(5):1735–1751. DOI: 10.1103/PhysRevA.3.1735.
  46. Katzenelenbaum BZ. Theory of Irregular Waveguides with Slowly Varying Parameters. Moscow: Publishing House of the USSR Academy of Sciences; 1961. 216 p. (in Russian).
  47. Power JG. Overview of photoinjectors. AIP Conference Proceedings. 2010;1299(1):20–28. DOI: 10.1063/1.3520316.
Received: 
16.06.2021
Accepted: 
30.06.2021
Published: 
30.07.2021