ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kovriguine D. A., Potapov A. I. Nonlinear wave dynamics of one-dimensional elastic systems. Part II. Systems with continuous spectrum. Izvestiya VUZ. Applied Nonlinear Dynamics, 1996, vol. 4, iss. 2, pp. 81-91. DOI: 10.18500/0869-6632-1996-4-2-81-91

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
534.1

Nonlinear wave dynamics of one-dimensional elastic systems. Part II. Systems with continuous spectrum

Autors: 
Kovriguine Dmitrij Anatolevich, Blagonravov Mechanical Engineering Research Institute of RAS
Potapov Alexandr Ivanovich, Lobachevsky State University of Nizhny Novgorod
Abstract: 

Nonlinear interactions of normal waves are investigated in a thin rectilinear bar, which has a planar oscillations. It was shown that two types of three-wave resonant interaction exist there, which lead to increase of dynamic stress in the bar, as a result of break-up instability of high-frequency mode involved in a resonant triad. Conditions of three-frequency envelope solitons formation, self-modulation of bending wavetrains and group synchronism of short and long waves are considered.

Key words: 
Acknowledgments: 
The work was supported by the International Science Foundation (grant N R9B000).
Reference: 
  1. Zarembo LK, Krasilnikov VA. Nonlinear phenomena in the propagation of elastic waves in solids. Sov Phys. Usp. 1971;13(6):778-797. DOI: 10.1070/PU1971v013n06ABEH004281.
  2. Jones GI, Kobett DR. Interactions of elastic waves in an isotropic solid. J. Acoust. Soc. Amer. 1963;35(1):5-10. DOI: 10.1121/1.1918405.
  3. Stepanov NS. To the question of the interaction of longitudinal and transverse elastic waves. Acoust. J. 1967;13(2):270-275.
  4. Maugin GA, Cadet F. Existence of solitary waves in martensitic alloys. Int. J. Engn. Sci. 1991;29(2):243-258. DOI: 10.1016/0020-7225(91)90021-T.
  5. Lavrentyev MA, Ishlinskii АYu. Dynamic forms of protrusion of elastic systems. Sov. Phys. Doklady. 1949;64(6):779-782.
  6. Volmir АS. Nonlinear Dynamics of Plates and Shells. М.: Nauka; 1972. 432 p.
  7. Ginsberg JM. Dynamic stability of transverse waves in circular cylindrical shell. J. Appl. Mech. 1974;41(1):77-82. DOI: 10.1115/1.3423275.
  8. Goodier JN, McIvor LK. The elastic cylindrical shell under nearly uniform radial impulse. J. Appl. Mech. 1964;31(2):259-266. DOI: 10.1115/1.3629595.
  9. Novikov VV. On the instability of elastic shells as a manifestation of internal resonance. J. Appl. Math. Mech. 1988;52(6):1022-1029.
  10. Potapov АI. Nonlinear interactions of longitudinal and bending waves in the rod. In: Differential and Integral Equations. Gorky: Gorky University Publishing; 1983. P. 52.
  11. Kauderer H. Nichtlineare Mechanik. Berlin: Springer; 1958. 696 p. (in German).
  12. Shenyavskii LА. Effect of geometric nonlinearity on waves propagating in a free thin plate. J. Appl. Math. Mech. 1979;43(6):1089-1094.
  13. Berezovskii AA, Zhernovoi YuV. Nonlinear longitudinal-transverse waves in elastic rods. In: Mathematical Physics. Kiev: Naukova Dumka; 1981. P. 41-48.
  14. Erofeev VN, Potapov AI. Three-frequency resonance interactions of longitudinal and bending waves in the rod. In: System Dynamics. Stability, Self-Oscillations and Stochasticity. Gorky: Gorky University Publishing; 1984. P. 74.
  15. Potapov АI. Nonlinear Waves of Deformation in Rods and Plates. Gorky: Gorky University Publishing; 1985. 108 p.
  16. Sukhorukov АP. Nonlinear Wave Interactions in Optics and Radiophysics. M.: Nauka; 1988. 232 p.
  17. Kurin VV. Origin and interaction of three-wave solitons. Radiophys. Quantum Electron. 1988;31(10):853-860. DOI: 10.1007/BF01040017.
  18. Kovrigin DА. Nonlinear Resonance Interactions of Waves in Elastic Elements of Structures. PhD Thesis. Nizhny Novgorod: Nizhny Novgorod State University; 1992.
  19. Dodd RK, Eilbeck JC, Gibbon JD, Morris HC. Solitons and Nonlinear Wave Equations. N.Y.: Academic Press; 1982. 630 p.
  20. Rabinovich MI, Trubetskov DI. Introduction to the Theory of Oscillations and Waves. М.: Nauka; 1984. 432 p.
  21. Pushkarov DI. Defects in Crystals. Quasi-Particle Method in Quantum Defect Theory. М.: Nauka; 1993. 436 p.
  22. Davydov АS. Solitons in molecular systems. Kiev: Naukova dumka; 1984. 288 p.
  23. Kovriguine DA. Modélisation mathématique du transfert I'enérgie dans une lattice de triplets résonants. Un exemple de l’évolution non linéaire d’une onde quasi harmonique dans une plaque solide. In: Proc. Int. Symp. Active control in mechanical engineering. 1993. ‘Ecole centrale de Lyon. Vol. 2.
Received: 
10.12.1995
Accepted: 
20.02.1996
Published: 
21.07.1996