For citation:
Kovriguine D. A., Potapov A. I. Nonlinear wave dynamics of one-dimensional elastic systems. Part II. Systems with continuous spectrum. Izvestiya VUZ. Applied Nonlinear Dynamics, 1996, vol. 4, iss. 2, pp. 81-91. DOI: 10.18500/0869-6632-1996-4-2-81-91
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Article type:
Article
UDC:
534.1
Nonlinear wave dynamics of one-dimensional elastic systems. Part II. Systems with continuous spectrum
Autors:
Kovriguine Dmitrij Anatolevich, Blagonravov Mechanical Engineering Research Institute of RAS
Potapov Alexandr Ivanovich, Lobachevsky State University of Nizhny Novgorod
Abstract:
Nonlinear interactions of normal waves are investigated in a thin rectilinear bar, which has a planar oscillations. It was shown that two types of three-wave resonant interaction exist there, which lead to increase of dynamic stress in the bar, as a result of break-up instability of high-frequency mode involved in a resonant triad. Conditions of three-frequency envelope solitons formation, self-modulation of bending wavetrains and group synchronism of short and long waves are considered.
Key words:
Acknowledgments:
The work was supported by the International Science Foundation (grant N R9B000).
Reference:
- Zarembo LK, Krasilnikov VA. Nonlinear phenomena in the propagation of elastic waves in solids. Sov Phys. Usp. 1971;13(6):778-797. DOI: 10.1070/PU1971v013n06ABEH004281.
- Jones GI, Kobett DR. Interactions of elastic waves in an isotropic solid. J. Acoust. Soc. Amer. 1963;35(1):5-10. DOI: 10.1121/1.1918405.
- Stepanov NS. To the question of the interaction of longitudinal and transverse elastic waves. Acoust. J. 1967;13(2):270-275.
- Maugin GA, Cadet F. Existence of solitary waves in martensitic alloys. Int. J. Engn. Sci. 1991;29(2):243-258. DOI: 10.1016/0020-7225(91)90021-T.
- Lavrentyev MA, Ishlinskii АYu. Dynamic forms of protrusion of elastic systems. Sov. Phys. Doklady. 1949;64(6):779-782.
- Volmir АS. Nonlinear Dynamics of Plates and Shells. М.: Nauka; 1972. 432 p.
- Ginsberg JM. Dynamic stability of transverse waves in circular cylindrical shell. J. Appl. Mech. 1974;41(1):77-82. DOI: 10.1115/1.3423275.
- Goodier JN, McIvor LK. The elastic cylindrical shell under nearly uniform radial impulse. J. Appl. Mech. 1964;31(2):259-266. DOI: 10.1115/1.3629595.
- Novikov VV. On the instability of elastic shells as a manifestation of internal resonance. J. Appl. Math. Mech. 1988;52(6):1022-1029.
- Potapov АI. Nonlinear interactions of longitudinal and bending waves in the rod. In: Differential and Integral Equations. Gorky: Gorky University Publishing; 1983. P. 52.
- Kauderer H. Nichtlineare Mechanik. Berlin: Springer; 1958. 696 p. (in German).
- Shenyavskii LА. Effect of geometric nonlinearity on waves propagating in a free thin plate. J. Appl. Math. Mech. 1979;43(6):1089-1094.
- Berezovskii AA, Zhernovoi YuV. Nonlinear longitudinal-transverse waves in elastic rods. In: Mathematical Physics. Kiev: Naukova Dumka; 1981. P. 41-48.
- Erofeev VN, Potapov AI. Three-frequency resonance interactions of longitudinal and bending waves in the rod. In: System Dynamics. Stability, Self-Oscillations and Stochasticity. Gorky: Gorky University Publishing; 1984. P. 74.
- Potapov АI. Nonlinear Waves of Deformation in Rods and Plates. Gorky: Gorky University Publishing; 1985. 108 p.
- Sukhorukov АP. Nonlinear Wave Interactions in Optics and Radiophysics. M.: Nauka; 1988. 232 p.
- Kurin VV. Origin and interaction of three-wave solitons. Radiophys. Quantum Electron. 1988;31(10):853-860. DOI: 10.1007/BF01040017.
- Kovrigin DА. Nonlinear Resonance Interactions of Waves in Elastic Elements of Structures. PhD Thesis. Nizhny Novgorod: Nizhny Novgorod State University; 1992.
- Dodd RK, Eilbeck JC, Gibbon JD, Morris HC. Solitons and Nonlinear Wave Equations. N.Y.: Academic Press; 1982. 630 p.
- Rabinovich MI, Trubetskov DI. Introduction to the Theory of Oscillations and Waves. М.: Nauka; 1984. 432 p.
- Pushkarov DI. Defects in Crystals. Quasi-Particle Method in Quantum Defect Theory. М.: Nauka; 1993. 436 p.
- Davydov АS. Solitons in molecular systems. Kiev: Naukova dumka; 1984. 288 p.
- Kovriguine DA. Modélisation mathématique du transfert I'enérgie dans une lattice de triplets résonants. Un exemple de l’évolution non linéaire d’une onde quasi harmonique dans une plaque solide. In: Proc. Int. Symp. Active control in mechanical engineering. 1993. ‘Ecole centrale de Lyon. Vol. 2.
Received:
10.12.1995
Accepted:
20.02.1996
Published:
21.07.1996
Journal issue:
- 257 reads