Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Ковригин Д. А., Потапов А. И. Нелинейная волновая динамика одномерных упругих систем. Часть II. Системы со сплошным спектром // Известия вузов. ПНД. 1996. Т. 4, вып. 2. С. 81-92.

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 0)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
534.1

Нелинейная волновая динамика одномерных упругих систем. Часть II. Системы со сплошным спектром

Авторы: 
Ковригин Дмитрий Анатольевич, Институт машиноведения им. А.А. Благонравова РАН
Потапов Александр Иванович, Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского (ННГУ)
Аннотация: 

B части II исследуются эффекты нелинейного взаимодействия нормальных волн в прямолинейном стержне, совершающем плоские продольно-изгибные колебания. Показано, что в такой системе существуют два типа трехволновых - резонансных взаимодействий, приводящих к повышению динамических напряжений вследствие распадной неустойчивости высокочастотных мод резонансных триплетов. Рассмотрены процессы формирования трехчастотных - солитонов огибающих, самомодуляции изгибной волны и группового синхронизма длинной и короткой волн.

Ключевые слова: 
Благодарности: 
Работа выполнена при поддержке Международного Научного Фонда (грант N R9B000).
Список источников: 
  1. Зарембо Л.K., Красильников B.A. Нелинейные явления при распространении упругих воля в твердых телах // УФН. 1970. T.102, № 2. С.549.
  2. Jones GI, Kobett DR. Interactions of elastic waves in an isotropic solid. J. Acoust. Soc. Amer. 1963;35(1):5-10. DOI: 10.1121/1.1918405.
  3. Stepanov NS. To the question of the interaction of longitudinal and transverse elastic waves. Acoust. J. 1967;13(2):270-275.
  4. Maugin GA, Cadet F. Existence of solitary waves in martensitic alloys. Int. J. Engn. Sci. 1991;29(2):243-258. DOI: 10.1016/0020-7225(91)90021-T.
  5. Лаврентьев M.A., Ишлинский А.Ю. Динамические формы выпучивания упругих систем // Изв. вузов СССР. 1949. T.64, № 6. С.779.
  6. Вольмир А.С. Нелинейная динамика пластинок и оболочек. М.: Наука, 1972. 432 с.
  7. Ginsberg JM. Dynamic stability of transverse waves in circular cylindrical shell. J. Appl. Mech. 1974;41(1):77-82. DOI: 10.1115/1.3423275.
  8. Goodier JN, McIvor LK. The elastic cylindrical shell under nearly uniform radial impulse. J. Appl. Mech. 1964;31(2):259-266. DOI: 10.1115/1.3629595.
  9. Новиков B.B. O неустойчивости упругих оболочек как проявлении внутреннего резонанса // ПММ. 1988. T.52, № 6. C.1022.
  10. Потапов А.И. Нелинейные взаимодействия продольных и изгибных волн в стержне // Межвуз.сб.: Дифф. и интегральные уравнения. Горький: ГГУ, 1983. C.52.
  11. Каудерер Г. Нелинейная механика. M.: Изд-во иностр. лит., 1961. 778с.
  12. Шенявский Л.А. Влияние геометрической нелинейности на волны, распространяющиеся в свободной тонкой пластине // ПММ. 1979. T.43, № 6. C.1089.
  13. Березовский A.A., Жерновой Ю.В. Нелинейные продольно-поперечные волны в упругих стержнях. Математ. физика, Киев, 1981. № 30 C.41.
  14. Ерофеев B.И., Потапов A.И. Трехчастотные резонансные взаимодействия продольных и изгибных волн в стержне // Динамика систем. Устойчивость, автоколебания и стохастичность. Межвуз. сб. Горький: ГГУ, 1984. С.74.
  15. Потапов А.И. Нелинейные волны деформации в стержнях и пластинах. Горький: ГГУ, 1985. 108 с.
  16. Сухоруков А.П. Нелинейные волновые взаимодействия в оптике и радиофизике. M.: Наука, 1988. 232 с.
  17. Курин B.B. Образование и взаимодействие трехволновых солитонов. Изв. вузов. Радиофизика. 1988. T.31, № 10. С.1201.
  18. Ковригин Д.А. Нелинейные резонансные взаимодействия волн в упругих элементах конструкций. Дисс. ... канд. физ.-мат. наук. Н.Новгород: ННГУ, 1992.
  19. Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. M.: Мир, 1988, 694 с.
  20. Рабинович M.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984. 432 с.
  21. Пушкаров Д.И. Дефекты в кристаллах. Метод квазичастиц в квантовой теории дефектов. М.: Наука, 1993. 436 с.
  22. Давыдов А.С. Солитоны в молекулярных системах. Киев: Наук. думка, 1984. 288 с.
  23. Kovriguine DA. Modélisation mathématique du transfert I'enérgie dans une lattice de triplets résonants. Un exemple de l’évolution non linéaire d’une onde quasi harmonique dans une plaque solide. In: Proc. Int. Symp. Active control in mechanical engineering. 1993. ‘Ecole centrale de Lyon. Vol. 2.
Поступила в редакцию: 
10.12.1995
Принята к публикации: 
20.02.1996
Опубликована: 
21.07.1996