ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Ekomasov E. G., Samsonov K. Y., Gumerov A. M., Kudryavtsev R. V. Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 6, pp. 749-765. DOI: 10.18500/0869-6632-003011, EDN: NAJQIF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Article type: 
517.957, 537.611, 51-73

Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities

Ekomasov Evgenii G, Bashkir State University
Samsonov Kirill Yurievich, University of Tyumen
Gumerov Azamat Maratovich, Bashkir State University
Kudryavtsev Roman V, Bashkir State University

Purpose of this work is to use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with impurities (or spatial inhomogeneity of the periodic potential).

Methods. Using the analytical method of collective coordinates for the case of the arbitrary number the same point impurities on the same distance each other, differential equation system was got for localized waves amplitudes as the functions on time. We used the finite difference method with explicit scheme for the numerical solution of the modified sine-Gordon equation. We used a discrete Fourier transform to perform a frequency analysis of the oscillations of localized waves calculate numerically.

Results. We found of the differential equation system for three harmonic oscillators with the elastic connection for describe related oscillations of nonlinear waves localized on the three same impurity. The solutions obtained from this system of equations for the frequencies of related oscillation well approximate the results of direct numerical modeling of a nonlinear system.

Conclusion. In the article shows that the related oscillation of nonlinear waves localized on three identical impurities located at the same distance from each other represent the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. The analysis of the influence of system parameters and initial conditions on the frequency and type of associated oscillations is carried out.

This work was supported by Russian Foundation for Basic Research, grant No. 20-31-90048
  1. Ryskin NM, Trubetskov DI. Nonlinear Waves. Moscow: Nauka, Fizmatlit; 2000. 272 p. (in Russian).
  2. Dauxois T, Peyrard M. Physics of Solitons. New York: Cambridge University Press; 2010. 436 p.
  3. Dodd RK, Eilbeck JC, Gibbon JD, Morris HC. Solitons and Nonlinear Wave Equations. London: Academic Press; 1982. 630 p.
  4. Cuevas-Maraver J, Kevrekidis PG, Williams F. The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Cham: Springer; 2014. 263 p. DOI: 10.1007/978-3-319-06722-3.
  5. Braun OM, Kivshar YS. The Frenkel–Kontorova Model: Concepts, Methods, and Applications. Berlin: Springer; 2004. 472 p. DOI: 10.1007/978-3-662-10331-9.
  6. Kryuchkov SV, Kukhar EI. Nonlinear electromagnetic waves in semi-Dirac nanostructures with superlattice. Eur. Phys. J. B. 2020;93(4):62. DOI: 10.1140/epjb/e2020-100575-4.
  7. Kiselev VV, Raskovalov AA, Batalov SV. Nonlinear interaction of domain walls and breathers with a spin-wave field. Chaos, Solitons and Fractals. 2019;127:217–225. DOI: 10.1016/j.chaos.2019.06.013.
  8. Delev VA, Nazarov VN, Scaldin OA, Batyrshin ES, Ekomasov EG. Complex dynamics of the cascade of kink–antikink interactions in a linear defect of the electroconvective structure of a nematic liquid crystal. JETP Lett. 2019;110(9):607–612. DOI: 10.1134/S0021364019210069.
  9. Kalbermann G. The sine-Gordon wobble. Journal of Physics A: Mathematical and General. 2004;37(48):11603–11612. DOI: 10.1088/0305-4470/37/48/006.
  10. Ferreira LA, Piette B, Zakrzewski WJ. Wobbles and other kink-breather solutions of the sineGordon model. Phys. Rev. E. 2008;77(3):036616. DOI: 10.1103/PhysRevE.77.036613.
  11. Saadatmand D, Dmitriev SV, Borisov DI, Kevrekidis PG. Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect. Phys. Rev. E. 2014;90(5):052902. DOI: 10.1103/PhysRevE.90.052902.
  12. Kivshar YS, Pelinovsky DE, Cretegny T, Peyrard M. Internal modes of solitary waves. Phys. Rev. Lett. 1998;80(23):5032–5035. DOI: 10.1103/PhysRevLett.80.5032.
  13. Jagtap AD, Vasudeva Murthy AS. Higher order scheme for two-dimensional inhomogeneous sineGordon equation with impulsive forcing. Communications in Nonlinear Science and Numerical Simulation. 2018;64:178–197. DOI: 10.1016/j.cnsns.2018.04.012.
  14. Gomide OML, Guardia M, Seara TM. Critical velocity in kink-defect interaction models: Rigorous results. Journal of Differential Equations. 2020;269(4):3282–3346. DOI: 10.1016/j.jde.2020.02.030.
  15. Javidan K. Analytical formulation for soliton-potential dynamics. Phys. Rev. E. 2008;78(4):046607. DOI: 10.1103/PhysRevE.78.046607.
  16. Piette B, Zakrzewski WJ. Scattering of sine-Gordon kinks on potential wells. Journal of Physics A: Mathematical and Theoretical. 2007;40(22):5995–6010. DOI: 10.1088/1751-8113/40/22/016.
  17. Al-Alawi JH, Zakrzewski WJ. Scattering of topological solitons on barriers and holes of deformed Sine–Gordon models. Journal of Physics A: Mathematical and Theoretical. 2008;41(31):315206. DOI: 10.1088/1751-8113/41/31/315206.
  18. Baron HE, Zakrzewski WJ. Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models. Journal of High Energy Physics. 2016;2016(6):185. DOI: 10.1007/JHEP06(2016)185.
  19. Gumerov AM, Ekomasov EG, Murtazin RR, Nazarov VN. Transformation of sine-Gordon solitons in models with variable coefficients and damping. Computational Mathematics and Mathematical Physics. 2015;55(4):628–637. DOI: 10.1134/S096554251504003X.
  20. Goodman RH, Haberman R. Interaction of sine-Gordon kinks with defects: the two-bounce resonance. Physica D: Nonlinear Phenomena. 2004;195(3–4):303–323. DOI: 10.1016/j.physd.2004.04.002.
  21. Gumerov AM, Ekomasov EG, Zakir’yanov FK, Kudryavtsev RV. Structure and properties of fourkink multisolitons of the sine-Gordon equation. Computational Mathematics and Mathematical Physics. 2014;54(3):491–504. DOI: 10.1134/S0965542514030075.
  22. Gonzalez JA, Bellor ´ ´ın A, Guerrero LE. Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations. Phys. Rev. E. 2002;65(6):065601.DOI: 10.1103/PhysRevE.65.065601.
  23. Gonzalez JA, Bellor ´ ´ın A, Garc´ıa-Nustes MA, Guerrero LE, Jim ˜ enez S, V ´ azquez L. Arbitrarily ´ large numbers of kink internal modes in inhomogeneous sine-Gordon equations. Phys. Lett. A. 2017;381(24):1995–1998. DOI: 10.1016/j.physleta.2017.03.042.
  24. Belova TI, Kudryavtsev AE. Solitons and their interactions in classical field theory. Phys. Usp. 1997;40(4):359–386. DOI: 10.1070/PU1997v040n04ABEH000227.
  25. Ekomasov EG, Gumerov AM, Murtazin RR. Interaction of sine-Gordon solitons in the model with attracting impurities. Math. Models Methods Appl. Sci. 2016;40(17):6178–6186. DOI: 10.1002/mma.3908.
  26. Ekomasov EG, Gumerov AM, Kudryavtsev RV. On the possibility of the observation of the resonance interaction between kinks of the sine-Gordon equation and localized waves in real physical systems. JETP Lett. 2015;101(12):835–839. DOI: 10.1134/S0021364015120061.
  27. Ekomasov EG, Gumerov AM, Kudryavtsev RV. Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping. J. Comput. Appl. Math. 2017;312:198–208. DOI: 10.1016/
  28. Ekomasov EG, Gumerov AM, Kudryavtsev RV, Dmitriev SV, Nazarov VN. Multisoliton dynamics in the sine-Gordon model with two point impurities. Braz. J. Phys. 2018;48(6):576–584. DOI: 10.1007/s13538-018-0606-4.
  29. Gumerov AM, Ekomasov EG, Kudryavtsev RV, Fakhretdinov MI. Excitation of large-amplitude localized nonlinear waves by the interaction of kinks of the sine-Gordon equation with attracting impurity. Russian Journal of Nonlinear Dynamics. 2019;15(1):21–34. DOI: 10.20537/nd190103.
  30. Geng X, Shen J, Xue B. A new nonlinear wave equation: Darboux transformation and soliton solutions. Wave Motion. 2018;79:44–56. DOI: 10.1016/j.wavemoti.2018.02.009.
  31. Ekomasov EG, Murtazin RR, Bogomazova OB, Gumerov AM. One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange. J. Magn. Magn. Mater. 2013;339:133–137. DOI: 10.1016/j.jmmm.2013.02.042.
  32. Ekomasov EG, Azamatov SA, Murtazin RR Studying the nucleation and evolution of magnetic inhomogeneities of the soliton and breather type in magnetic materials with local inhomogeneities of anisotropy. Phys. Metals Metallogr. 2008;105(4):313–321. DOI: 10.1134/S0031918X08040017.
  33. Ekomasov EG, Murtazin RR, Nazarov VN. Excitation of magnetic inhomogeneities in three-layer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange. J. Magn. Magn. Mater. 2015;385:217–221. DOI: 10.1016/j.jmmm.2015.03.019.
  34. Gumerov AM, Ekomasov EG, Kudryavtsev RV. One-dimensional dynamics of magnetic inhomogeneities in a three- and five-layer ferromagnetic structure with different values of the magnetic parameters. Journal of Physics: Conference Series. 2019;1389:012004. DOI: 10.1088/1742-6596/1389/1/012004.
  35. Shamsutdinov MA, Nazarov VN, Lomakina IY, Kharisov AT, Shamsutdinov DM. Ferro- and Antiferromagnetodynamics. Nonlinear Oscillations, Waves and Solitons. Moscow: Nauka; 2009. 456 p. (in Russian).
  36. Magnus K. Schwingungen: Eine Einfuhrung in die theoretische Behandlung von Schwingungs-problemen. Stuttgart: Teubner; 1961. 298 s. (in German).
  37. Faleychik BV. One-Step Methods for the Numerical Solution of the Cauchy Problem. Minsk: Belarusian State University Publishing; 2010. 42 p. (in Russian)
Available online: