ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Dudchenko O. A., Guria G. T. Numerical study of flows past a pair of partially shrouded rotating cylinders. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 4, pp. 44-53. DOI: 10.18500/0869-6632-2010-18-4-44-53

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 111)
Article type: 

Numerical study of flows past a pair of partially shrouded rotating cylinders

Dudchenko Olga Aleksandrovna, Moscow Institute of Physics and Technology

A symmetrical two­dimensional flow past two rotating circular cylinders in a side­by­side arrangement is numerically investigated. Each cylinder is partially covered with an impermeable shroud in such a way that the unshielded moving section faces the incident flow. The effect of flow speed and tangential speed of the cylinder surface on flow topology is investigated for Reynolds numbers from 0 to 100. The formation of stationary eddies – «turrons» – in front of the gap between the cylinders is shown for a wide range of governing parameters. These secondary motions are shown to diminish at higher Reynolds numbers. Drag forces on the cylinders are quantified for flow patterns under consideration. Similarities between flow patterns near the cylinders and those observed in some peristaltic pumping regimes are discussed.

  1. Flettner A. Arrangement for exchanging energy between a current and a body therein. US Patent No 1674169; 06.19.1928.
  2. Steel BN, Harding MH. The application of rotating cylinders to ship maneuvering. Report No 148. UK: National Physical Laboratory, Ship Division; 1970.
  3. Mittal S. Control of flow past bluff bodies using rotating control cylinders. J. Fluids Struct. 2001;15(2):291–326. DOI: 10.1006/jfls.2000.0337.
  4. Gad-El-Hak M, Bushnell DM. Separation control: Review. ASME Journal of Fluids Engineering. 1991;113(1):5–30. DOI: 10.1115/1.2926497.
  5. Modi VJ. Moving surface boundary-layer control: A review. J. Fluids & Str. 1997;11(6):627–663. DOI: 10.1006/jfls.1997.0098.
  6. Kubo Y, Modi VJ, Kotsubo C, Nayashida K, Kato K. Suppression of wind-induced vibrations of tall structures through the moving surface boundary-layer control. J. Wind Eng. Industr. Aerodyn. 1996;61:181–194. DOI: 10.1016/0167-6105(96)00039-6.
  7. Shi D. Biomedical devices and their applications. Springer-Verlag; 2004.
  8. Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelength at low Reynolds number. J. Fluid Mech. 1969;37(4):799–825. DOI: 10.1017/S0022112069000899.
  9. Regirer SA. Quasi-one-dimensional theory of peristaltic flows. Fluid Dyn 1984;19:747–754. DOI: 10.1007/BF01093542.
  10. Brown TD, Hung TK. Computational and experimental investigations of two-dimensional nonlinear peristaltic flows. J. Fluid Mech. 1977;83(2):249–272. DOI: 10.1017/S0022112077001189.
  11. Takabatake S, Ayukawa K, Mori A. Peristaltic pumping in circular cylindrical tubes: a numerical study of fluid transport and its efficiency. J. Fluid Mech. 1988;193:267–283. DOI: 10.1017/S0022112088002149.
  12. Kochin NE, Kibel IA, Rose NV. Theoretical hydromechanics. 2nd ed.. Moscow: Fizmatgiz; 1963. 728 p. (in Russian).
  13. Thoman DC, Szewczyk AA. Time-dependent viscous flow over a circular cylinder. High-speed computing in fluid dynamics. Phys. Fluids Suppl. II. 1969;12:76–86. DOI: 10.1063/1.1692472.
  14. Kuznetsov BG, Sirochenko VP. On the formulation of hydrodynamic problems in multi-connected areas. Computational technologies: Collection of scientific works. Novosibirsk: IVT SB RAS. 1995;4(12):209–218 (in Russian).
  15. Sood DR, Elrod HGJr. Numerical solution of the incompressible Navier-Stokes equations in doubly-connected regions. AIAA Journal. 1974;12(5):636–641. DOI: 10.2514/3.49311.
  16. Roache PJ. Computational Fluid Dynamics. Hermosa, Albuquerque, NM; 1976.
  17. Williamson CHK. Evolution of a single wake behind a pair of bluff bodies. J. Fluid Mech. 1985;159:1–18. DOI: 10.1017/S002211208500307X.
  18. Van Dyke M. An Album of Fluid Motion. Parabolic Press, Inc.; 1982.
  19. Jaffrin MY, Shapiro AH. Peristaltic pumping. Annual Reviews of Fluid Mechanics. 1971;3:13–37. DOI: 10.1146/annurev.fl.03.010171.000305.
  20. Levina GV. Some modes of peristaltic pumping. Bulletin of the USSR Academy of Sciences. MFG. 1983;5:31–35 (in Russian).
  21. Yudovich VI. Stability of steady flows of viscous incompressible fluids. Dokl. Akad. Nauk SSSR. 1965;161(5):1037–1040 (in Russian).
  22. Benjamin TB. Bifurcation phenomena in steady flows of a viscous fluid. I. Theory. Proc. R. Soc. Lond. A. 1978;359:1–26. DOI: 10.1098/rspa.1978.0028.
  23. Sattinger DH. Bifurcation and symmetry breaking in applied mathematics. Bulletin (New Series) of the American Mathematical Society. 1980;3(2):779–819. DOI: 10.1090/S0273-0979-1980-14823-5.
  24. Ghil M, Ma T, Wang S. Structural bifurcation of 2-D incompressible flows. Indiana Univ. Math. Journal. 2001;50(1):159–180.
  25. Ma T, Wang S. Interior structural bifurcation and separation of 2D incompressible flows. Journal of Mathematical Physics. 2004;45(5):1762–1776. DOI: 10.1063/1.1689005.
Short text (in English):
(downloads: 90)