ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

Cite this article as:

Dudchenko O. A., Gurija G. T. Numerical study of flows past a pair of partially shrouded rotating cylinders. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 4, pp. 44-53. DOI:


Numerical study of flows past a pair of partially shrouded rotating cylinders


A symmetrical two­dimensional flow past two rotating circular cylinders in a side­by­side arrangement is numerically investigated. Each cylinder is partially covered with an impermeable shroud in such a way that the unshielded moving section faces the incident flow. The effect of flow speed and tangential speed of the cylinder surface on flow topology is investigated for Reynolds numbers from 0 to 100. The formation of stationary eddies – «turrons» – in front of the gap between the cylinders is shown for a wide range of governing parameters. These secondary motions are shown to diminish at higher Reynolds numbers. Drag forces on the cylinders are quantified for flow patterns under consideration. Similarities between flow patterns near the cylinders and those observed in some peristaltic pumping regimes are discussed.


1. Flettner A. Arrangement for exchanging energy between a current and a body therein. US Patent No 1674169. 1928. 2. Steel B.N., Harding M.H. The application of rotating cylinders to ship maneuvering. Report No 148, National Physical Laboratory, Ship Division, UK. 1970. 3. Mittal S. Control of flow past bluff bodies using rotating control cylinders // J. Fluids Struct. 2001. Vol. 15. P. 291. 4. Gad-El-Hak M., Bushnell D.M. Separation control: Review // ASME Journal of Fluids Engineering. 1991. Vol. 113. P. 5. 5. Modi V.J. Moving surface boundary-layer control: A review // J. Fluids & Str. 1997. Vol. 11. P. 627. 6. Kubo Y., Modi V.J., Kotsubo C., Nayashida K., Kato K. Suppression of wind-induced vibrations of tall structures through the moving surface boundary-layer control // J. Wind Eng. Industr. Aerodyn. 1995. Vol. 61. P. 181. 7. Shi D. Biomedical devices and their applications. Springer-Verlag, 2004. 8. Shapiro A.H., Jaffrin M.Y., Weinberg S.L. Peristaltic pumping with long wavelength at low Reynolds number // J. Fluid Mech. 1969. Vol. 37 (4). P. 799. 9. Регирер С.А. Квазиодномерная теория перистальтических течений // Изв. АН СССР. Механика жидкости и газа. 1984. No 5. C. 89. 10. Brown T.D., Hung T.-K. Computational and experimental investigations of two-dimensional nonlinear peristaltic flows // J. Fluid Mech. 1977. Vol. 83 (2). P. 249. 11. Takabatake S., Ayukawa K., Mori A. Peristaltic pumping in circular cylindrical tubes: a numerical study of fluid transport and its efficiency // J. Fluid Mech. 1988. Vol. 193. P. 267. 12. Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. В 2-х ч. М.: Физматгиз, 1963. 13. Thoman D.C., Szewczyk A.A. Time-dependent viscous flow over a circular cylinder // High-speed computing in fluid dynamics. Phys. Fluids Suppl. II. 1969. P. 76. 14. Кузнецов Б.Г., Сироченко В.П. О постановке задач гидродинамики в многосвязных областях // Вычислительные технологии: Сб. научн. трудов. Новосибирск: ИВТ СО РАН, 1995. Т. 4, No 12. С. 209. 15. Sood D.R., Elrod H.G.Jr. Numerical solution of the incompressible Navier-Stokes equations in doubly-connected regions // AIAA Journal. 1974. Vol. 12, No 5. P. 636. 16. Роуч П. Вычислительная гидродинамика. М.: Мир, 1980. (Roache P.J. Computational Fluid Dynamics. Hermosa, Albuquerque, NM, 1976). 17. Williamson C.H.K. Evolution of a single wake behind a pair of bluff bodies // J. Fluid Mech. 1985. Vol. 159. P. 1. 18. Ван-Дайк М. Альбом течений жидкости и газа. М.: Мир. 1986 (Van Dyke M. An Album of Fluid Motion. Parabolic Press, Inc. 1982). 19. JaffrinM.Y., Shapiro A.H. Peristaltic pumping // Annual Reviews of Fluid Mechanics. 1971. V.3. P. 13. Перевод: Джеффрин М., Шапиро А. Перистальтическое прокачивание. Механика. 1972, No 5. C. 88. 20. Левина Г.В. Некоторые режимы перистальтического прокачивания // Известия АН СССР. МЖГ. 1983, No 5. C. 31. 21. Юдович В.И. Об устойчивости стационарных течений вязкой несжимаемой жидкости // ДАН. 1965. Т. 161, No 5. С. 1037. 22. Benjamin T.B. Bifurcation phenomena in steady flows of a viscous fluid. I. Theory // Proc. R. Soc. Lond. A. 1978. Vol. 359. P.1. 23. Sattinger D.H. Bifurcation and symmetry breaking in applied mathematics // Bulletin (New Series) of the American Mathematical Society. 1980. V.3. No 2. P. 779. 24. Ghil M., Ma T., Wang S. Structural bifurcation of 2-D incompressible flows // Indiana Univ. Math. Journal. 2001. Vol. 50, No 1. P. 159. 25. Ma T., Wang S. Interior structural bifurcation and separation of 2D incompressible flows // Journal of Mathematical Physics. 2004. Vol. 45, No 5. P. 1762.

Short text (in English):
(downloads: 8)
Full text:
(downloads: 12)