ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Сухарев Д. М., Koryakin V. A., Kazakov A. O. On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 6, pp. 816-831. DOI: 10.18500/0869-6632-003133, EDN: LDKTZM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Language: 
Russian
Article type: 
Article
UDC: 
517.925 + 517.93
EDN: 

On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model

Autors: 
Сухарев Дмитрий Михайлович, National Research University "Higher School of Economics"
Koryakin Vladislav Andreevich, National Research University "Higher School of Economics"
Kazakov Alexey Olegovich, National Research University "Higher School of Economics"
Abstract: 

The topic of the paper — Lorenz-type attractors in multidimensional systems. We consider a six-dimensional model that describes convection in a layer of liquid, taking into account impurities in the atmosphere and liquid, as well as the rotation of the Earth.

The main purpose of the work is to study bifurcations in the corresponding system and describe scenarios for the emergence of chaotic attractors of various types.

Results. It is shown that in the system under consideration, both a classical Lorenz attractor (the theory of which was developed in the works of Afraimovich–Bykov–Shilnikov) and an attractor of a new type, visually similar to the Lorenz attractor, but containing a symmetric pair of equilibrium states, can arise. It has been established that the Lorenz attractor in this system is born as a result of the classical scenario proposed by L. P. Shilnikov. We propose a new scenario for the emergence of an attractor of the second type via bifurcations inside the Lorenz attractor. In the paper we also discuss homoclinic and heteroclinic bifurcations that inevitably arise inside the found attractors, as well as their possible pseudohyperbolicity.
 

Acknowledgments: 
The work was carried out with the financial support of the project “Mirror Laboratories” HSE University (Sections 1-3). The studies in Section 4 and Conclusion were financially supported by the Russian Science Foundation, grant No. 23-71-30008.
Reference: 
  1. Lorenz EN. Deterministic nonperiodic flow. Journal of atmospheric sciences. 1963;20(2):130–141. DOI: 10.18500/0869-6632-00313310.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.
  2. Afraimovich VS, Bykov VV, Shilnikov LP. On the origin and structure of the Lorenz attractor. Akademiia Nauk SSSR Doklady. 1977;234:336–339 (in Russian).
  3. Afraimovich VS, Bykov VV, Shilnikov LP. Attractive nonrough limit sets of Lorenz-attractor type. Trudy Moskovskoe Matematicheskoe Obshchestvo. 1982;44 :150–212 (in Russian).
  4. Guckenheimer J, Williams RF. Structural stability of Lorenz attractors. Publications Mathematiques de l’IHES. 1979;50:59–72.
  5. Marsden JE, McCracken M, Guckenheimer J. A Strange, Strange Attractor. In: The Hopf Bifurcation and Its Applications. Applied Mathematical Sciences, vol. 19. New York: Springer; 1976. С. 368–381. DOI: 10.1007/978-1-4612-6374-6_25.
  6. Williams RF. The structure of Lorenz attractors. Publications Mathematiques de l’IHES. 1979;50: 73–99. DOI: 10.1007/BF02684770.
  7. Tucker W. The Lorenz attractor exists. Comptes Rendus de l’Academie des Sciences-Series  I-Mathematics. 1999;328(12):1197–1202. DOI: 10.1016/s0764-4442(99)80439-x.
  8. Gonchenko SV, Kazakov AO, Turaev D. Wild pseudohyperbolic attractor in a four-dimensional Lorenz system. Nonlinearity. 2021;34(2):1–30.
  9. Turaev DV, Shilnikov LP. An example of a wild strange attractor. Sb. Math. 1998;189:291–314.
  10. Turaev DV, Shilnikov LP. Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors. Doklady Mathematics. 2008;77(1):17–21. DOI: 10.1134/S1064562408010055.
  11. Moon S, Seo JM, Beom-Soon H, Park J. A physically extended Lorenz system. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2019;29(6):063129. DOI: 10.1063/1.5095466.
  12. Dhooge A, Govaerts W, Kuznetsov YA, Meijer HGE, Sautois B. New features of the software MatCont for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems. 2008;14(2):147–175. DOI:10.1080/13873950701742754.
  13. De Witte V, Govaerts W, Kuznetsov YA, Friedman M. Interactive initialization and continuation of homoclinic and heteroclinic orbits in MATLAB. ACM Trans. Math. Software. 2012;38(3):1–34. DOI: 10.1145/2168773.2168776.
  14. Shilnikov LP. Bifurcation theory and the Lorenz model. In: Marsden J., McCraken M. (eds) Appendix to Russian edition of The Hopf Bifurcation and Its Applications. M.: Mir; 1980. P. 317–335.
  15. Benettin G, Galgani L, Giorgilli A, Strelcyn M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica. 1980;15(1):9–20.
  16. Lyubimov DV, Zaks MA. Two mechanisms of the transition to chaos in finite-dimensional models of convection. Physica D: Nonlinear Phenomena. 1983;9(1–2):52–64.
  17. Rovella A. The dynamics of perturbations of the contracting Lorenz attractor. Bol. da Soc. Bras. de Matematica Bull. Braz. Math. Soc. 1993;24:233–259. DOI: 10.1007/BF01237679.
  18. Barrio R, Shilnikov A, Shilnikov L. Kneadings, symbolic dynamics and painting Lorenz chaos. International Journal of Bifurcation and Chaos. 2012;22(04):1230016. DOI: 10.1142/S0218127412300169.
  19. Xing T, Barrio R, Shilnikov A. Symbolic quest into homoclinic chaos. International Journal of Bifurcation and Chaos. 2014;24(08):1440004. DOI: 10.1142/S0218127414400045.
  20. Pusuluri K, Shilnikov A. Homoclinic chaos and its organization in a nonlinear optics model. Physical Review E. 2018;98(4):040202. DOI: 10.1103/PhysRevE.98.040202.
  21. Pusuluri K, Meijer HGE, Shilnikov AL. Homoclinic puzzles and chaos in a nonlinear laser model. Communications in Nonlinear Science and Numerical Simulation. 2021;93:105503.
  22. Bykov VV. On the generation of a non-trivial hyperbolic set from a contour formed by separatrices of saddles. In: Methods of qualitative theory and bifurcation theory. Gorky: Gorky Univ. Press; 1978. P. 22–32.
  23. Bykov VV. The bifurcations of separatrix contours and chaos. Physica D: Nonlinear Phenomena. 1993;62(1–4):290–299.
     
Received: 
22.06.2024
Accepted: 
20.09.2024
Available online: 
14.11.2024
Published: 
29.11.2024