ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Viadimirov A. G., Toronov V. Y., Derbov V. L. On the complex Lorenz model. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 6, pp. 51-63. DOI: 10.18500/0869-6632-1995-3-6-51-63

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
532.517, 621.391.01

On the complex Lorenz model

Autors: 
Viadimirov Andrei Georgievich, Saint Petersburg State University
Toronov Vladislav Yurevich, Saratov State University
Derbov Vladimir Leonardovich, Saratov State University
Abstract: 

The geometric properties of the complex Lorenz model such as the topology of the phase space and limit sets, and the boundedness of attractors are studied. It is shown that in the complex case the homoclinic bifurcation is the codimension-two one.

Key words: 
Reference: 
  1. Gibbon JD, McGuinness MJ. The real and complex Lorenz equations in rotating fluids and lasers. Physica D 1982;5(1):108-122. DOI: 10.1016/0167-2789(82)90053-7.
  2. Lorenz EN. Deterministic nonperiodic flow. J. Atmos. Sci. 1963;20(2):130-141. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
  3. Sparrow C. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Berlin: Springer; 1982. 270 p. DOI: 10.1007/978-1-4612-5767-7.
  4. Orayevskii АN. Sov. J. Comm. Tech. Electron. 1959;4:718.
  5. Tang DY, Weiss СО. Uniqueness of the chaotic attractor of a single-mode laser. Phys. Rev. А. 1994;49(2):1296-1300. DOI: 10.1103/PhysRevA.49.1296. Tang DY, Li MY, Weiss CO. Field dynamics of a single-mode laser. Phys. Rev. A. 1991;44(11):7597-7604. DOI: 10.1103/physreva.44.7597. Weiss СО, Abraham NB, Hubner U. Homoclinic and heteroclinic chaos in a single-mode laser. Phys. Rev. Lett. 1988;61(14):1587-1590. DOI: 10.1103/PhysRevLett.61.1587.
  6. Fowler AC, Gibbon JD, McGuinness MJ. The complex Lorenz equations. Physica D. 1982;4(2):139-163. DOI: 10.1016/0167-2789(82)90057-4.
  7. Fowler AC, Gibbon JD, McGuinness MJ. The real and complex Lorenz equations and their relevance to physical systems. Physica D. 1983;7(1-3):126-134. DOI: 10.1016/0167-2789(83)90123-9. Fowler AC, McGuinness MJ. On the Nature of the Torus in the Complex Lorenz Equations. SIAM J. Appl. Math. 1984;44(4):681-700. DOI: 10.1137/0144049.
  8. Mandel P, Zeghlache H. Stability of a detuned single mode homogeneously broadened ring laser. Opt. Commun. 1983;47(2):146-150. DOI: 10.1016/0030-4018(83)90104-9. Zeghlache H, Mandel P. Influence of detuning on the properties of laser equations. J. Opt. Soc. Am. В. 1985;2(1):18-22. DOI:                       10.1364/JOSAB.2.000018.
  9. Ning C, Haken H. Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations. Phys. Rev. A. 1990;41(7):3826-3837. DOI: 10.1103/physreva.41.3826.
  10. Ning C, Haken H. Quasiperiodicity involving twin oscillations in the complex Lorenz equations describing a detuned laser. Z. Phys. В - Condensed Matter. 1990;81:457-461. DOI: 10.1007/BF01390829.
  11. Vilaseca R, de Valcarcel GJ, Roldan E. Physical interpretation of laser phase dynamics. Phys. Rev. A. 1990;41(9):5269-5272. DOI: 10.1103/physreva.41.5269.
  12. Roldan E, de Valcarcel GJ, Vilaseca R, Mandel P. Single-mode-laser phase dynamics. Phys. Rev. A. 1993;48(1):591-598. DOI: 10.1103/physreva.48.591.
  13. Ning CZ, Haken H. Geometrical phase and amplitude accumulations in dissipative systems with cyclic attractors. Phys. Rev. Lett. 1992;68(14):2109-2112. DOI: 10.1103/PhysRevLett.68.2109.
  14. Toronov V, Derbov V. Geometric phases in lasers and liquid flows. Phys. Rev. А. 1994;49(2):1392-1399. DOI: 10.1103/physreva.49.1392.
  15. Toronov V, Derbov V. Geometric-phase effects in laser dynamics. Phys. Rev. A. 1994;50(1):878-881. DOI: 10.1103/physreva.50.878.
  16. Oraevskii AN, Toronov VYu. Influence of fluctuations on an attractor in the model of a single-mode laser. Sov. J. Quantum Electron. 1989;19(10):1327-1331. DOI: 10.1070/QE1989v019n10ABEH009238.
  17. Shimizu T, Morioka N. On the Bifurcation of a Symmetric Limit Cycle to an Asymmetric One in a Simple Model. Phys. Lett. A. 1980;76:201-204. DOI: 10.1016/0375-9601(80)90466-1.
  18. Shilnikov AL. On bifurcations of the Lorenz attractor in the Shimizu-Morioka model. Physica D. 1993;62(1-4):338-346. DOI: 10.1016/0167-2789(93)90292-9.
  19. Vladimirov AG, Volkov DYu. Low-intensity chaotic operations of a laser with a saturable absorber. Opt. Communs. 1993;100(1-4):351-360.DOI: 10.1016/0030-4018(93)90597-X.
  20. Rucklidge АМ. Chaos in a low-order model of magnetoconvection. Physica D. 1993;62(1-4):323-337. DOI:  10.1016/0167-2789(93)90291-8.
  21. Dirac PAM.The Principles of quantum mechanics. London: The Clarendon Press; 1930. 257 p.
  22. Pancharatnam S. Generalized theory of interference, and its applications. Proc. Ind. Acad. Sci. Ser. A. 1956;44(5):247-262. DOI: 10.1007/bf03046050.
  23. Samuel J, Bhandari R. General Setting for Berry's Phase. Phys. Rev. Lett. 1988;60(23):2339-2342. DOI: 10.1103/PhysRevLett.60.2339.
  24. Anandan J, Aharonov Y. Geometry of quantum evolution. Phys. Rev. Lett. 1990;65(14):1697-1700. DOI: 10.1103/PhysRevLett.65.1697.
  25. Dubrovin BA, Novikov SP, Fomenko LТ. Modern Geometry. М.: Nauka; 1984. 343 p.
  26. Kobayashi S, Nomizu K. Foundations of Differential Geometry. N.Y.: Wiley; 1996. 352 p.
  27. Shilnikov LP. A case of the existence of a denumerable set of periodic motions. Sov. Phys. Doklady. 1965;160(3):558-561.
Received: 
05.04.1995
Accepted: 
21.11.1995
Published: 
21.11.1996