ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Koronovskii A. A., Maksimenko V. A., Moskalenko O. I., Hramov A. E. On the problem of computation of the spectrum of spatial lyapunov exponents for the spatially extended beam plasma systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 2, pp. 158-174. DOI: 10.18500/0869-6632-2011-19-2-158-174

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 172)
Article type: 

On the problem of computation of the spectrum of spatial lyapunov exponents for the spatially extended beam plasma systems

Koronovskii Aleksei Aleksandrovich, Saratov State University
Maksimenko Vladimir Aleksandrovich, Immanuel Kant Baltic Federal University
Moskalenko Olga Igorevna, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University

The behavior of the Pierce diode has been considered from the point of view of the spatial Lyapunov exponents. The method of calculation of the spectrum of the spatial Lyapunov exponents for the electron spatial extended systems has been proposed. The autonomous dynamics of the Pierce diode as well as the behavior of two unidirectionally coupled Pierce diodes when the generalized synchronization is taken place have been considered.

  1. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. Vol. 2. Moscow: Fizmatlit; 2004. 648 p. (in Russian).
  2. Klinger T, Schroder C, Block D, Greiner F, Piel A, Bonhomme G, and Naulin V. Chaos control and taming of turbulence in plasma devices. Phys. Plasmas. 2001;8(5):1961–1968. DOI: 10.1063/1.1350960.
  3. Godfrey BB. Oscillatory nonlinear electron flow in Pierce diode. Phys. Fluids. 1987;30(5):1553–1560. DOI: 10.1063/1.866217.
  4. Kuhn S and Ender A. Oscillatory nonlinear flow and coherent structures in Pierce–type diodes. J. Appl. Phys. 1990;68:732.
  5. Thamilmaran K, Senthilkumar DV, Venkatesan A, and Lakshmanan M. Experimental realization of strange nonchaotic attractors in a quasiperiodically forced electronic circuit. Phys. Rev. E. 2006;74(3):036205. DOI: 10.1103/PhysRevE.74.036205.
  6. Karakasidis TE, Fragkou A, and Liakopoulos A. System dynamics revealed by recurrence quantification analysis: Application to molecular dynamics simulations. Phys. Rev. E. 2007;76(2):021120. DOI: 10.1103/physreve.76.021120.
  7. Macek WM, and Redaelli S. Estimation of the entropy of the solar wind flow. Phys. Rev. E. 2000;62(5):6496–6504. DOI: 10.1103/physreve.62.6496.
  8. Porcher R and Thomas G. Estimating Lyapunov exponents in biomedical time series. Phys. Rev. E. 2001;64(1):010902. DOI: 10.1103/PhysRevE.64.010902.
  9. Dunki RM. Largest Lyapunov-exponent estimation and selective prediction by means of simplex forecast algorithms. Phys. Rev. E. 2000;62(5):6505–6515. DOI: 10.1103/physreve.62.6505.
  10. Kuznetsov SP and Trubetskov DI. Chaos and hyperchaos in a backward-wave oscillator. Radiophysics and Quantum Electronics. 2004;47(5–6):341–355. DOI: 10.1023/
  11. Kuznetsov SP. Example of a physical system with a hyperbolic attractor of the Smale-Williams type. Phys. Rev. Lett. 2005;95(14):144101. DOI: 10.1103/PhysRevLett.95.144101.
  12. Pyragas K. Weak and strong synchronization of chaos. Phys. Rev. E. 1996;54(5):R4508–R4511. DOI: 10.1063/1.54216.
  13. Hramov AE and Koronovskii AA. Generalized synchronization: a modified system approach. Phys. Rev. E. 2005;71(6):067201. DOI: 10.1103/PhysRevE.71.067201.
  14. Goldobin DS and Pikovsky AS. Synchronization and desynchronization of self-sustained oscillators by common noise. Phys. Rev. E. 2005;71(4):045201. DOI: 10.1103/PhysRevE.71.045201.
  15. Goldobin DS and Pikovsky AS. Synchronization of self-sustained oscillators by common white noise. Physica A. 2005;351(1):126–132. DOI: 10.1016/j.physa.2004.12.014.
  16. Hramov AE, Koronovskii AA, and Moskalenko OI. Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators? Phys. Lett. A. 2006;354(5–6):423–427. DOI: 10.1016/j.physleta.2006.01.079.
  17. Osipov GV, Hu B, Zhou CS, Ivanchenko MV, and Kurths J. Three types of transitons to phase synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 2003;91(2):024101. DOI: 10.1103/PhysRevLett.91.024101.
  18. Rosenblum MG, Pikovsky AS, and Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 1997;78(22):4193–4196. DOI: 10.1103/PhysRevLett.78.4193.
  19. Politi A, Ginelli F, Yanchuk S, and Maistrenko Y. From synchronization to Lyapunov exponents and back. Physica D. 2006;224(1):90–101. DOI: 10.1016/j.physd.2006.09.032.
  20. Hramov AE, Koronovskii AA, and Kurovskaya MK. Two types of phase synchronization destruction. Phys. Rev. E. 2007;75(3):036205. DOI: 10.1103/PhysRevE.75.036205.
  21. Hramov AE, Koronovskii AA, and Popov PV. Incomplete noise-induced synchronization of spatially extended systems. Phys. Rev. E. 2008;77(2):036215. DOI: 10.1103/PhysRevE.77.036215.
  22. Kuznetsov SP. Dynamic Chaos. Moscow: Fizmatlit; 2001. 296 p. (in Russian).
  23. Benettin G, Galgani L, Giorgilli A, and Strelcyn JM. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. P. I. Theory. P. II. Numerical application. Meccanica. 1980;15(1):9–30.
  24. Filatov RA, Kalinin YA, Hramov AE. Effect of positive ions on the microwave generation in a low-voltage vircator. Tech. Phys. Lett. 2006;32(6):492–494. DOI: 10.1134/S1063785006060125.
  25. Starodubov AV, Koronovskii AA, Hramov AE et al. Generalized synchronization in a system of coupled klystron chaotic oscillators. Tech. Phys. Lett. 2007;33(7):612–615. DOI: 10.1134/S1063785007070218.
  26. Dmitriev BS, Hramov AE, Koronovskii AA, Starodubov AV, Trubetskov DI, and Zharkov YD. First experimental observation of generalized synchronization phenomena in microwave oscillators. Phys. Rev. Lett. 2009;102(7):074101. DOI: 10.1103/PhysRevLett.102.074101.
  27. Nusinovich GS, Vlasov AN, and Antonsen TM. Nonstationary phenomena in tapered gyro-backward-wave oscillators. Phys. Rev. Lett. 2001;87(21):218301. DOI: 10.1103/PhysRevLett.87.218301.
  28. Keefe LR. Dynamics of perturbed wavetrain solutions to the Ginzburg-Landau equation. Stud. Appl. Math. 1985;73(2):91–153. DOI: 10.1002/sapm198573291.
  29. Koronovskii AA, Rempen IS, Khramov AE. Investigation of unstable periodic space-time states in a distributed self-oscillating system with a supercritical current. Izvestia RAS. Ser. Phys. 2003;67(12):1705–1708 (in Russian).
  30. Wolf A, Swift J, Swinney HL, and Vastano J. Determining Lyapunov exponents from a time series. Physica D. 1985;16(3):285–317. DOI: 10.1016/0167-2789(85)90011-9.
  31. Kuptsov PV. Computation of Lyapunov exponents for spatially extended systems: advantages and limitations of various numerical methods. Izvestiya VUZ. Applied Nonlinear Dynamics. 2010;18(5):91–110 (in Russian). DOI: 10.18500/0869-6632-2010-18-5-91-110.
  32. Koronovskii AA, Moskalenko OI, Frolov NS et al. On the spectrum of spatial Lyapunov exponents for a nonlinear active medium described by a complex Ginzburg-Landau equation. Tech. Phys. Lett. 2010;36(7):645–647. DOI: 10.1134/S1063785010070187.
  33. Koronovskii AA, Trubetskov DI, Khramov AE. Methods of Nonlinear Dynamics and Chaos in Problems of Microwave Electronics. Vol. 2. Unsteady and Chaotic Processes. Moscow: Fizmatlit; 2009. 392 p. (in Russian).
  34. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. Vol. 1. Moscow: Fizmatlit; 2003. 496 p. (in Russian).
  35. Roache P. Fundamentals for Computational Fluid Dynamics. Hermosa Pub; 1998. 648 p.
  36. Filatov RA, Hramov AE, and Koronovskii AA. Chaotic synchronization in coupled spatially extended beam-plasma systems. Phys. Lett. A. 2006;358(4):301–308. DOI: 10.1016/j.physleta.2006.05.039.
Short text (in English):
(downloads: 103)