Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Образец для цитирования:

Короновский А. А., Максименко В. А., Москаленко О. И., Храмов А. Е. К вопросу о расчете спектра пространственных ляпуновских экспонент в пространственно-распределенных пучково-плазменных системах¤ //Известия вузов. ПНД. 2011. Т. 19, вып. 2. С. 158-174. DOI: https://doi.org/10.18500/0869-6632-2011-19-2-158-174

Язык публикации: 
русский
Рубрика: 

К вопросу о расчете спектра пространственных ляпуновских экспонент в пространственно-распределенных пучково-плазменных системах¤

Авторы: 
Короновский Алексей Александрович, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Максименко Владимир Александрович, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Москаленко Ольга Игоревна, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Храмов Александр Евгеньевич, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Аннотация: 

В работе проведен анализ поведения диода Пирса – эталонной пучково-плазменной системы, демонстрирующей хаотическую динамику – с позиций рассмотрения поведения спектра пространственных показателей Ляпунова. Описан метод расчета спектра показателей Ляпунова для пространственно-распределенных систем электронной природы. Рассмотрен как случай автономной динамики системы, так и динамика двух однонаправлено связанных диодов Пирса при установлении режима обобщенной хаотической синхронизации.

Ключевые слова: 
DOI: 
10.18500/0869-6632-2011-19-2-158-174
Библиографический список: 

1. Трубецков Д.И., Храмов А.Е. Лекции по сверхвысокочастотной электронике для физиков. т. 2. М.: Физматлит, 2004. 2. Klinger T., Schroder C., Block D., Greiner F., Piel A., Bonhomme G., and Naulin V. Chaos control and taming of turbulence in plasma devices // Phys. Plasmas. 2001. Vol. 8, No 5. P. 1961. 3. Godfrey B.B. Oscillatory nonlinear electron flow in Pierce diode // Phys. Fluids. 1987. Vol. 30. P. 1553. 4. Kuhn S. and Ender A. Oscillatory nonlinear flow and coherent structures in Pierce–type diodes // J. Appl. Phys. 1990. Vol. 68. P. 732. 5. Thamilmaran K., Senthilkumar D.V., Venkatesan A., and Lakshmanan M. Experimental realization of strange nonchaotic attractors in a quasiperiodically forced electronic circuit // Phys. Rev. E. 2006. Vol. 74. 036205. 6. Karakasidis T.E., Fragkou A., and Liakopoulos A. System dynamics revealed by recurrence quantification analysis: Application to molecular dynamics simulations // Phys. Rev. E. 2007. Vol. 76, No 2. 021120. 7. Macek W.M. and Redaelli S. Estimation of the entropy of the solar wind flow // Phys. Rev. E. 2000. Vol. 62, No 5. 6496. 8. Porcher R. and Thomas G. Estimating Lyapunov exponents in biomedical time series // Phys. Rev. E. 2001. Vol. 64, No 1. 010902(R). 9. Dunki R.M.  ? Largest Lyapunov-exponent estimation and selective prediction by means of simplex forecast algorithms // Phys. Rev. E. 2000. Vol. 62, No 5. 6505. 10. Kuznetsov S.P. and Trubetskov D.I. Chaos and hyperchaos in a backward-wave oscillator // Radiophysics and Quantum Electronics. 2004. Vol. 47, No 5,6. P. 341. 11. Kuznetsov S.P. Example of a physical system with a hyperbolic attractor of the Smale-Williams type // Phys. Rev. Lett. 2005. Vol. 95. 144101. 12. Pyragas K. Weak and strong synchronization of chaos // Phys. Rev. E. 1996. Vol. 54, No 5. R4508. 13. Hramov A.E. and Koronovskii A.A. Generalized synchronization: a modified system approach // Phys. Rev. E. 2005. Vol. 71, No 6. 067201. 14. Goldobin D.S. and Pikovsky A.S. Synchronization and desynchronization of self-sustained oscillators by common noise//Phys. Rev. E. 2005. Vol.71, No4. 045201(R). 15. Goldobin D.S. and Pikovsky A.S. Synchronization of self-sustained oscillators by common white noise // Physica A. 2005. Vol. 351. P. 126. 16. Hramov A.E., Koronovskii A.A., and Moskalenko O.I. Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators? // Phys. Lett. A. 2006. Vol. 354, No 5-6. P. 423. 17. Osipov G.V., Hu B., Zhou C.S., Ivanchenko M.V., and Kurths J. Three types of transitons to phase synchronization in coupled chaotic oscillators // Phys. Rev. Lett. 2003. Vol. 91, No 2. 024101. 18. Rosenblum M.G., Pikovsky A.S., and Kurths J. From phase to lag synchronization in coupled chaotic oscillators // Phys. Rev. Lett. 1997. Vol. 78, No 22. 4193. 19. Politi A., Ginelli F., Yanchuk S., and Maistrenko Yu. From synchronization to Lyapunov exponents and back // Physica D. 2006. Vol. 224. P. 90. 20. Hramov A.E., Koronovskii A.A., and Kurovskaya M.K. Two types of phase synchronization destruction // Phys. Rev. E. 2007. Vol. 75, No 3. 036205. 21. Hramov A.E., Koronovskii A.A., and Popov P.V. Incomplete noise-induced synchronization of spatially extended systems // Phys. Rev. E. 2008. Vol. 77, No 2. 036215. 22. Кузнецов С.П. Динамический хаос. Сер. «Современная теория колебаний и волн». М.: Физматлит, 2001. 23. Benettin G., Galgani L., Giorgilli A., and Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. P. I. Theory. P. II. Numerical application // Meccanica Vol. 15.1980. P. 9. 24. Филатов Р.А., Калинин Ю.А., and Храмов А.Е. Исследование влияния положительных ионов на свч-генерацию в низковольтном виркаторе // Письма в ЖТФ. 2006. Vol. 32, No 11. P. 61. 25. Стародубов А.В., Короновский А.А., Храмов А.Е., Жарков Ю.Д., and Дмитриев Б.С. Исследование обобщенной синхронизации в системе двух связанных клистронных автогенераторов хаоса//Письма в ЖТФ. 2007. Vol. 33, No14. P. 58. 26. Dmitriev B.S., Hramov A.E., Koronovskii A.A., Starodubov A.V., Trubetskov D.I., and Zharkov Y.D. First experimental observation of generalized synchronization phenomena in microwave oscillators // Physical Review Letters. 2009. Vol. 102, No 7. 074101. 27. Nusinovich G.S., Vlasov A.N., and Antonsen T.M. Nonstationary phenomena in tapered gyro-backward-wave oscillators // Phys.Rev.Lett. 2001. Vol. 87, No 21. 218301. 28. Keefe L.R. Dynamics of perturbed wavetrain solutions to the ginzburg-landau equation // Stud. Appl. Math. 1985. Vol. 73. P. 91. 29. Короновский А.А., Ремпен И.С., and Храмов А.Е. Исследование неустойчивых периодических пространственно-временных состояний в распределённой автоколебательной системе со cверхкритическим током // Изв. РАН, сер. физич. 2003. Vol. 67, No 12. 1705. 30. Wolf A., Swift J., Swinney H.L., and Vastano J. Determining lyapunov exponents from a time series // Physica D. 1985. Vol. 16. 285. 31. Купцов П.В. Вычисление показателей ляпунова для распределенных систем: преимущества и недостатки численных методов // Известия вузов. ПНД. 2011. Vol. 18, No 5. C. 93. 32. Короновский А.А., Москаленко О.И., Фролов Н.С. and Храмов А.Е. К вопросу о спектре пространственных ляпуновских показателей нелинейной активной среды, описываемой комплексным уравнением Гинзбурга–Ландау // Письма в ЖТФ. 2010. Vol. 36, No 14. C. 19. 33. Короновский А.А., Трубецков Д.И., and Храмов А.Е. Методы нелинейной динамики и хаоса в задачах электроники сверхвысоких частот. т. 2. нестационарные и хаотические процессы. М.: Физматлит, 2009. 34. Трубецков Д.И. and Храмов А.Е. Лекции по сверхвысокочастотной электронике для физиков. Т. 1. М.: Физматлит, 2003. 35. Роуч. П. Вычислительная гидродинамика. М.: Мир, 1980. 36. Filatov R.A., Hramov A.E., and Koronovskii A.A. Chaotic synchronization in coupled spatially extended beam-plasma systems // Phys. Lett. A. 2006. Vol. 358. P. 301.

Краткое содержание: 
Полный текст в формате PDF(Ru):