ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

dynamical system

Self-oscillating system generating rough hyperbolic chaos

Topic and aim. The aim of the work is design of rough chaos generator, whose attractor implements dynamics close to Anosov flow on a manifold of negative curvature, as well as constructing and analyzing mathematical model, and
conducting circuit simulation of the dynamics using the Multisim software.

Investigated models. A mathematical model is considered that is a set of ordinary differential equations of the ninth order with algebraic nonlinearity, and a circuit representing the chaos generator is designed.

From the history of the theory of dynamical systems: Problem of classification

Aim. The aim of the work is to study the history of ideas about the classification of dynamical systems, which are the most important objects of modern mathematics and having a huge number of applications. Solving the problem of classification allows you to take the first steps in understanding the structure of the system as a whole. Method. The study is based on an analysis of original works involving some of the memories of participants in the described events. Results.

Chaotic dynamics of pendulum ring chain with vibrating suspension

Topic and aim. The aim of the work is to introduce into consideration a mechanical system that is a chain of oscillators capable of demonstrating hyperbolic chaos due to the presence of attractor in the form of the Smale–Williams solenoid. Investigated model. We study the pendulum ring chain with parametric excitation due to the vertical oscillating motion of the suspension alternately at two different frequencies, so that the standing wave patterns appear in the chain with a spatial scale that differs by three times.

An electronic device implementing a strange nonchaotic Hunt–Ott attractor

Topic and aim. The aim of the article is to propose an electronic device representing a non-autonomous dynamical system with a strange nonchaotic attractor insensitive to variation of parameters (with the only limitation that the ratio of the frequencies of the components of the external control driving remains unchanged being equal to a fixed irrational number). Investigated model.

Intermittency near phase synchronization boundary at different time scales

In this paper the results of the study of the intermittent behavior taking place near the phase synchronization boundary on the different time scales of the observation are given. It has been shown that below the phase synchronization boundary, in the area of eyelet intermittency there are time scales where the ring intermittency is also observed. In other words, for the certain values of the coupling strength and time scale of observation both types of the intermittent behavior take place simultaneously.

On the problem of computation of the spectrum of spatial lyapunov exponents for the spatially extended beam plasma systems

The behavior of the Pierce diode has been considered from the point of view of the spatial Lyapunov exponents. The method of calculation of the spectrum of the spatial Lyapunov exponents for the electron spatial extended systems has been proposed. The autonomous dynamics of the Pierce diode as well as the behavior of two unidirectionally coupled Pierce diodes when the generalized synchronization is taken place have been considered.

Dynamical chaos: the difficult path discovering

Dynamic chaos – a remarkable milestone development of science of the last centuryhas attracted the attention of different areas of knowledge. Chaos theory describes not only a wide range of phenomena in various fields of physics and other natural sciences and penetrates into the humanitarian sphere, but also significantly influenced the scientific picture of the world.

Influence of a flexural deformation of a tool on self-organization and bifurcations of dynamical metal cutting system

In the article we offer to consider case of a flexural deformation shifts of a tool when they are essential for nonlinear dynamics of cutting process. This situation is observed for drill deep  holes, because a boring bar has a small values of a flexural stiffness. In that case an angle of cutting  edge reduces and cutting forces increase if the deformation shifts also increased in velocity  direction. The last circumstance becomes occasion for positive feedback that essentially changes  dynamics of the cutting process.

Self-organization and bifurcations of dynamical metal cutting system

The problems of nonlinear dynamics of cutting metal are considered in the article. We offer mathematical model of dynamical system that includes a dynamical relation of the cutting process by using turning example. Basic positions of the dynamical relation are the forces dependence of cutting area, the force’s delay of elastic deformation shift of a tool by relative to workpiece, limitations of the cutting forces on clearance face of the tool, dependence of the cutting forces of the cutting velocity.

Intermittency of type­-I with noise and eyelet intermittency

In this article we compare the characteristics of two types of the intermittent behavior (type-I intermittency in the presence of noise and eyelet intermittency) supposed hitherto to be the different phenomena. We prove that these effects are the same type of dynamics observed under different conditions. The correctness of our conclusion is proven by the consideration of different sample systems, such as quadratic map, van der Pol oscillator and Rossler system.