ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Khutieva A. B., Grachev A. A., Beginin E. N., Sadovnikov A. V. Propagation of spin waves in a lattice of laterally and vertically coupled YIG microwaveguides by changing the magnetization angle in linear and nonlinear modes. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, iss. 1, pp. 57-71. DOI: 10.18500/0869-6632-003084, EDN: TPROZK

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
537.611.2
EDN: 

Propagation of spin waves in a lattice of laterally and vertically coupled YIG microwaveguides by changing the magnetization angle in linear and nonlinear modes

Autors: 
Khutieva A. B., Saratov State University
Grachev Andrey Andreevich, Saratov State University
Beginin Evgeny N. , Saratov State University
Sadovnikov Aleksandr Vladimirovich, Saratov State University
Abstract: 

Purpose. Investigation of the joint manifestation of the effects of anisotropic signal propagation, coupling, and nonlinear power dependence of the medium parameters in a lattice of laterally and vertically coupled spin-wave (SW) microwaveguides. Consideration of the case of the influence of the rotation of the magnetization angle and the change of the lateral gap between microwaveguides located on the same substrate on the transverse profile of the spin-wave beam and the spatial localization of the SW amplitude.

Methods. The method of micromagnetic modeling based on the numerical solution of the Landau–Lifshitz–Hilbert equation shows the possibility of controlling the direction of propagation of SW in an ensemble of laterally and vertically coupled iron yttrium garnet (YIG) microwaveguides by changing the magnetization angle. By the method of numerical integration of the system of coupled discrete nonlinear Schrodinger equations, the possibility of changing the transverse profile of the spin-wave beam by changing the level of the initial signal amplitude is shown.

Results. The spatial distributions of the components of the dynamic magnetization of the SW excited in two microwaveguides located on the same substrate obtained in micromagnetic simulations indicate a change in the character of localization of the SW power in the output sections of the microwaveguides. At variation of the lattice magnetization angle, a shift of the threshold power value is observed, at which a characteristic curbing of the transverse width of the spin-wave beam in the nonlinear mode appears.

Conclusion. When excitation of surface magnetostatic SW in a lattice of laterally and vertically coupled microwaveguides, a transformation of the transverse profile of the wave is observed at a deviation of the magnetization angle of the structure by 15º , which is manifested in the change of the SW length and its localization in each of the microwaveguides. The combined effects of dipole coupling, gyrotropy, and nonlinearity of the medium make it possible to control the value of the threshold power of the SW, at which the mode of diffractionless propagation of the spin-wave beam is realized in a single layer of the structure.

Acknowledgments: 
This work was supported by the Russian Science Foundation (RSF) under project number 23-79-30027
Reference: 
  1. Chumak AV, Kabos P, Wu M, Abert C, Adelmann C, Adeyeye AO, Akerman J, Aliev FG, Anane A, Awad A, Back CH, Barman A, Bauer GEW, Becherer M, Beginin EN, Bittencourt VASV, Blanter YM, Bortolotti P, Boventer I, Bozhko DA, Bunyaev SA, Carmiggelt JJ, Cheenikundil RR, Ciubotaru F, Cotofana S, Csaba G, Dobrovolskiy OV, Dubs C, Elyasi M, Fripp KG, Fulara H, Golovchanskiy IA, Gonzalez-Ballestero C, Graczyk P, Grundler D, Gruszecki P, Gubbiotti G, Guslienko K, Haldar A, Hamdioui S, Hertel R, Hillebrands B, Hioki T, Houshang A, Hu C-M, Huebl H, Huth M, Iacocca E, Jungfleisch MB, Kakazei GN, Khitun A, Khymyn R, Kikkawa T, Klaui M, Klein O, Klos JW, Knauer S, Koraltan S, Kostylev M, Krawczyk M, Krivorotov IN, Kruglyak VV, Lachance-Quirion D, Ladak S, Lebrun R, Li Y, Lindner M, Macedo R, Mayr S, Melkov GA, Mieszczak S, Nakamura Y, Nembach HT, Nikitin AA, Nikitov SA, Novosad V, Otalora JA, Otani Y, Papp A, Pigeau B, Pirro P, Porod W, Porrati F, Qin H, Rana B, Reimann T, Riente F, Romero-Isart O, Ross A, Sadovnikov AV, Safin AR, Saitoh E, Schmidt G, Schultheiss H, Schultheiss K, Serga AA, Sharma S, Shaw JM, Suess D, Surzhenko O, Szulc K, Taniguchi T, Urbanek M, Usami K, Ustinov AB, van der Sar T, van Dijken S, Vasyuchka VI, Verba R, Viola Kusminskiy S, Wang Q, Weides M, Weiler M, Wintz S, Wolski SP, Zhang X. Advances in magnetics roadmap on spin-wave computing. IEEE Transactions on Magnetics. 2022;58(6): 0800172. DOI: 10.1109/TMAG.2022.3149664.
  2. Prabhakar A, Stancil DD. Spin Waves: Theory and Applications. New York: Springer; 2009. 348 p. DOI: 10.1007/978-0-387-77865-5.
  3. Wang Q, Kewenig M, Schneider M, Verba R, Kohl F, Heinz B, Geilen M, Mohseni M, Lagel B, Ciubotaru F, Adelmann C, Dubs C, Cotofana SD, Dobrovolskiy OV, Bracher T, Pirro P, Chumak AV. A magnonic directional coupler for integrated magnonic half-adders. Nature Electronics. 2020;3(12):765–774. DOI: 10.1038/s41928-020-00485-6.
  4. Vogt K, Schultheiss H, Jain S, Pearson JE, Hoffmann A, Bader SD, Hillebrands B. Spin waves turning a corner. Appl. Phys. Lett. 2012;101(4):042410. DOI: 10.1063/1.4738887.
  5. Balynsky M, Gutierrez D, Chiang H, Kozhevnikov A, Dudko G, Filimonov Y, Balandin AA, Khitun A. A magnetometer based on a spin wave interferometer. Scientific Reports. 2017;7(1): 11539. DOI: 10.1038/s41598-017-11881-y.
  6. Raskhodchikov D, Bensmann J, Nikolaev KO, Lomonte E, Jin L, Steeger P, Preuß JA, Schmidt R, Schneider R, Kern J, de Vasconcellos SM, Bratschitsch R, Demokritov SO, Pernice WHP, Demidov VE. Propagation of spin waves in intersecting yttrium iron garnet nanowaveguides. Phys. Rev. Applied. 2022;18(5):054081. DOI: 10.1103/PhysRevApplied.18.054081.
  7. Sadovnikov AV, Beginin EN, Sheshukova SE, Sharaevskii YP, Stognij AI, Novitski NN, Sakharov VK, Khivintsev YV, Nikitov SA. Route toward semiconductor magnonics: Light-induced spin-wave nonreciprocity in a YIG/GaAs structure. Phys. Rev. B. 2019;99(5):054424. DOI: 10.1103/ PhysRevB.99.054424.
  8. Martyshkin AA, Davies CS, Sadovnikov AV. Magnonic interconnections: Spin-wave propagation across two-dimensional and three-dimensional junctions between yttrium iron garnet magnonic stripes. Phys. Rev. Applied. 2022;18(6):064093. DOI: 10.1103/PhysRevApplied.18.064093.
  9. Sadovnikov AV, Beginin EN, Sheshukova SE, Romanenko DV, Sharaevskii YP, Nikitov SA. Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes. Appl. Phys. Lett. 2015;107(20):202405. DOI: 10.1063/1.4936207.
  10. Sasaki H, Mikoshiba N. Directional coupling of magnetostatic surface waves in a layered structure of YIG films. J. Appl. Phys. 1981;52(5):3546–3552. DOI: 10.1063/1.329134.
  11. Morozova MA, Sharaevskaya AY, Sadovnikov AV, Grishin SV, Romanenko DV, Beginin EN, Sharaevskii YP, Nikitov SA. Band gap formation and control in coupled periodic ferromagnetic structures. J. Appl. Phys. 2016;120(22):223901. DOI: 10.1063/1.4971410. 
  12. Dudko GM, Filimonov YA. Self-focusing of confined beams of backward volume magnetostatic waves in ferromagnetic films: a numerical experiment. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(6):29–40 (in Russian).
  13. Ustinov AB, Drozdovskii AV, Kalinikos BA. Multifunctional nonlinear magnonic devices for microwave signal processing. Appl. Phys. Lett. 2010;96(14):142513. DOI: 10.1063/1.3386540.
  14. Ganguly AK, Vittoria C. Magnetostatic wave propagation in double layers of magnetically anisotropic slabs. J. Appl. Phys. 1974;45(10):4665–4667. DOI: 10.1063/1.1663113.
  15. Puszkarski H. Theory of interface magnons in magnetic multilayer films. Surface Science Reports. 1994;20(2):45–110. DOI: 10.1016/0167-5729(94)90011-6.
  16. Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B. The design and verification of MuMax3. AIP Advances. 2014;4(10):107133. DOI: 10.1063/1.4899186.
  17. Gubbiotti G, Sadovnikov A, Beginin E, Nikitov S, Wan D, Gupta A, Kundu S, Talmelli G, Carpenter R, Asselberghs I, Radu IP, Adelmann C, Ciubotaru F. Magnonic band structure in vertical meander-shaped Co40Fe40B20 thin films. Phys. Rev. Applied. 2021;15(1):014061. DOI: 10.1103/PhysRevApplied.15.014061.
  18. Sadovnikov AV, Odintsov SA, Beginin EN, Sheshukova SE, Sharaevskii YP, Nikitov SA. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes. Phys. Rev. B. 2017;96(14):144428. DOI: 10.1103/PhysRevB.96.144428.
  19. Sadovnikov AV, Odintsov SA, Sheshukova SE, Sharaevskii YP, Nikitov SA. Nonlinear lateral spin-wave transport in planar magnonic networks. IEEE Magnetics Letters. 2018;9:3707105. DOI: 10.1109/LMAG.2018.2874349.
  20. Vashkovskii AV, Stalmakhov AV. Dispersion of magnetostatic waves in two-layer ferrite-ferrite structures. Radio Engineering and Electronic Physics. 1984;29(5):901–907 (in Russian).
  21. Grachev AA, Sheshukova SE, Kostylev MP, Nikitov SA, Sadovnikov AV. Reconfigurable dipolar spin-wave coupling in a bilateral yttrium iron garnet structure. Phys. Rev. Applied. 2023;19(5):054089. DOI: 10.1103/PhysRevApplied.19.054089.
  22. Odincov SA, Grachev AA, Nikitov SA, Sadovnikov AV. Intensity and magnetization angle reconfigurable lateral spin-wave coupling and transport. Journal of Magnetism and Magnetic Materials. 2020;500:166344. DOI: 10.1016/j.jmmm.2019.166344.
  23. Gurevich AG, Melkov GA. Magnetization Oscillations and Waves. London: CRC Press; 1996. 456 p.
  24. Lederer F, Stegeman GI, Christodoulides DN, Assanto G, Segev M, Silberberg Y. Discrete solitons in optics. Phys. Rep. 2008;463(1–3):1–126. DOI: 10.1016/j.physrep.2008.04.004.
  25. Kivshar YS, Agrawal GP. Optical Solitons: From Fibers to Photonic Crystals. Waltham: Academic Press; 2003. 540 p.
  26. Sadovnikov AV, Grachev AA, Beginin EN, Odintsov SA, Sheshukova SE, Sharaevskii YP, Serdobintsev AA, Mitin DM, Nikitov SA. Coupled spin waves in magnetic waveguides induced by elastic deformations in YIG–piezoelectric structures. JETP Letters. 2017;106(7):465–469. DOI: 10.1134/S0021364017190110.
  27. Sasaki H, Mikoshiba N. Directional coupling of magnetostatic surface waves in layered magnetic thin films. Electronics Letters. 1979;15(6):172–174. DOI: 10.1049/el:19790121.
  28. Zavislyak IV, Tychinskii AV. Physical Principles of Functional Microelectronics. Kyiv: UMK VO; 1989. 105 p. (in Russian).
  29. Damon RW, Eshbach JR. Magnetostatic modes of a ferromagnet slab. Journal of Physics and Chemistry of Solids. 1961;19(3–4):308–320. DOI: 10.1016/0022-3697(61)90041-5.
  30. Gubbiotti G. Three-Dimensional Magnonics: Layered, Micro- and Nanostructures. New York: Jenny Stanford Publishing; 2019. 416 p. DOI: 10.1201/9780429299155.
Received: 
17.07.2023
Accepted: 
20.11.2023
Available online: 
27.12.2023
Published: 
31.01.2024