For citation:
Bezruchko B. P., Seleznev E. P., Smirnov D. A. Reconstructing equations of a nonautonomous nonlinear oscillator from a time series: models, experiment. Izvestiya VUZ. Applied Nonlinear Dynamics, 1999, vol. 7, iss. 1, pp. 49-67. DOI: 10.18500/0869-6632-1999-7-1-49-67
Reconstructing equations of a nonautonomous nonlinear oscillator from a time series: models, experiment
We present а procedure for constructing model differential equations of an oscillatory harmonically driven system from а scalars time series. The procedure uses а global reconstruction technique, and a priori information about the character of influence is taken into account. The procedure is tested using several well-known systems — nonlinear oscillators with different kinds of friction forces and potential functions. We
demonstrate its effectiveness by applying it to several examples, including the dynamical systems with added noise and the real radioengineering system — nonlinear RLC-circuit with switched capacitors.
- Crutchfield JP, McNamara BS. Equations оf motion from а data series. Complex Systems. 1987;1:417-452.
- Cremers J, Hubler А. Construction of differential equations from experimental data. Z. Naturforschung А. 1987;42(8):797-802. DOI: 10.1515/zna-1987-0805.
- Breeden JL, Hubler A. Reconstructing equations of motion from experimental data with unobserved variables. Phys. Rev. А. 1990;42(10):5817-5826. DOI: 10.1103/PhysRevA.42.5817.
- Gouesbet G, Maquet J. Construction оf phenomenological models from numerical scalar time series. Physica D. 1992;58(1–4):202-215. DOI: 10.1016/0167-2789(92)90109-Z.
- Gouesbet G, Letellier С. Global vector—field approximation by using а multivariate polynomial L2, approximation оn nets. Phys.Rev. E. 1994;49(6):4955-4972. DOI: 10.1103/PhysRevE.49.4955.
- Gribkov DA, Gribkova VV, Kravtsov YuA, Kuznetsov YuI, Rzhanov AG. Restoration of the structure of the dynamic system by time series. J. Comm. Tech. Elecron. 1994;39(2):269-277. (in Russian).
- Pavlov AN, Yanson NV, Anishchenko VS. Application of statistical methods in solving the problem of global reconstruction. Tech. Phys. Lett. 1997;23(8):7-13. (in Russian).
- Kadtke J. Classification оf highly noisy signals using global dynamical models. Phys.Lett. A. 1995;203(4):196-202. DOI: 10.1016/0375-9601(95)00375-D.
- Kadtke J, Kremliovsky M. Estimating statistics for detecting determinism using global dynamical models. Phys.Lett. A. 1997;229(2):97-106. DOI: 10.1016/S0375-9601(97)00149-7.
- Anishchenko VS, Pavlov AN. Global reconstruction in application to multi— channel communication. Phys.Rev. E. 1998;57(2):2455-2457. DOI: 10.1103/PhysRevE.57.2455.
- Farmer JD, Sidorowich JJ. Predicting chaotic time series. Phys. Rev. Lett. 1987;59(8):845-848. DOI: 10.1103/PhysRevLett.59.845.
- Casdagli M. Nonlinear prediction оf chaotic time series. Physica D. 1989;35(3):335-356. DOI: 10.1016/0167-2789(89)90074-2.
- Takens F. Detecting strange attractors in turbulence. In: Rang D, Young LS, editors. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. Vol. 898. Berlin: Springer; 1980. P. 366-381. DOI: 10.1007/BFb0091924.
- Scheffczyk G, Parlitz U, Kurz T, Knop W, Lauterborn W. Comparison оf bifurcation structures of driven dissipative nonlinear oscillators. Phys. Rev. А. 1991;43(12):6495-6502. DOI: 10.1103/PhysRevA.43.6495.
- Bezruchko BP, Seleznev EP. Complex dynamics of the excited oscillator with piecewise-linear characteristic. Tech. Phys. Lett. 1994;20(19):75-79. (in Russian).
- 230 reads