ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Sysoeva M. V., Sysoev I. V., Ponomarenko V. I., Prokhorov M. D. Reconstructing the neuron-like oscillator equations modeled by a phase-locked system with delay from scalar time series. Izvestiya VUZ. Applied Nonlinear Dynamics, 2020, vol. 28, iss. 4, pp. 397-413. DOI: 10.18500/0869-6632-2020-28-4-397-413

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 206)
Language: 
Russian
Article type: 
Article
UDC: 
530.182

Reconstructing the neuron-like oscillator equations modeled by a phase-locked system with delay from scalar time series

Autors: 
Sysoeva Marina Vyacheslavovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Sysoev Ilya Vyacheslavovich, Saratov State University
Ponomarenko Vladimir Ivanovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Prokhorov Mihail Dmitrievich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The purpose of this work is to develop the reconstruction technique for the neuron-like oscillator equations descibed by a phase-locked system model with delay from scalar time series. Methods. We reconstruct the state vector given a scalar series of only one variable corresponding to the transmembrane potential. The second variable is obtained by numerical differentiation with smoothing by a polynomial. The third variable is obtained by numerical integration using the Simpson method. Next, the target function describing the length of the nonlinear function at a trial delay time is constructed and minimized. Results. The delay time, effective system parameters, and nonlinear function can be reconstructed using the proposed method. The method gives correct results in various periodic and chaotic regimes, including intermittency. The method works even in presence of 1% measurement noise. Conclusion. The described method is useful as a tools for reconstructing neuron models from experimental data of extracellular or intracellular recordings from the brain or in culture.

Reference: 

1. Cremers J., Hubler A. Construction of Differential Equations from Experimental Data // Zeitschrift fur Naturforschung – Section A Journal of Physical Sciences. 1987. Vol. 42, no. 8. P. 797–802.

2. Bezruchko B.P., Smirnov D.A. Extracting Knowledge From Time Series. Berlin: Springer, 2010, 406 p. 

3. Besruchko B.P., Smirnov D.A. Constructing nonautonomous differential equations from experimental time series // Phys. Rev. E. 2000. Vol. 63. 016207

4. Smirnov D.A., Bezruchko B.P. Detection of coupling in ensembles of stochastic oscillators // Phys. Rev. E. 2009. Vol. 79. 046204.

5. Ponomarenko V.I., Prokhorov M.D., Karavaev A.S., Bezruchko B.P. Recovery of parameters of delayed-feedback systems from chaotic time series. JETP, 2005, vol. 100, no. 3, pp. 457–467.

6. Baake E., Baake M., Bock H.G., Briggs K.M. Fitting ordinary differential equations to chaotic data // Phys. Rev. A. 1992. Vol. 45, no. 8. P. 5524–5529.

7. Gorodetskyi V., Osadchuk M. Analytic reconstruction of some dynamical systems // Physics Letters, Section A: General, Atomic and Solid State Physics. 2013. Vol. 377, no. 9. P. 703–713.

8. Bezruchko B.P., Smirnov D.A., Sysoev I.V. Identification of chaotic systems with hidden variables (modified Bock’s algorithm) // Chaos, Solitons & Fractals. 2006. Vol. 29. P. 82–90.

9. Packard N., Crutchfield J., Farmer J., Shaw R. Geometry from a Time Series // Phys. Rev. Lett. 1980. Vol. 45. P. 712–716.

10. Fowler A., Kember G. Delay recognition in chaotic time series // Physics Letters A. 1993. Vol. 175, no. 6. P. 402–408.

11. Hegger R., Bunner M.J., Kantz H., Giaquinta A. Identifying and Modeling Delay Feedback Systems // Phys. Rev. Lett. 1998. Vol. 81, no. 3. P. 558–561.

12. Bunner M.J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A. Reconstruction of systems with delayed feedback: I. Theory // The European Physical Journal D. 2000. Vol. 10, no. 2. P. 165–176.

13. Tian Y.-C., Gao F. Extraction of delay information from chaotic time series based on information entropy // Physica D: Nonlinear Phenomena. 1997. Vol. 108, no. 1. P. 113–118.

14. Bunner M.J., Meyer Th., Kittel A., Parisi, J. Recovery of the time-evolution equation of timedelay systems from time series // Phys. Rev. E. 1997. Vol. 56, no. 5. P. 5083–5089.

15. Voss H., Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations // Physics Letters A. 1997. Vol. 234, no. 5. P. 336–344.

16. Ellner S.P., Kendall B.E., Wood S.N., McCauley E., Briggs C.J. Inferring mechanism from timeseries data: Delay-differential equations // Physica D: Nonlinear Phenomena. 1997. Vol. 110, no. 3. P. 182–194.

17. Prokhorov M.D., Ponomarenko V.I., Khorev V.S. Recovery of delay time from time series based on the nearest neighbor method // Physics Letters A. 2013. Vol. 377, no. 43. P. 3106–3111.

18. Prokhorov M.D., Ponomarenko V.I. Reconstruction of time-delay systems using small impulsive disturbances // Phys. Rev. E. 2009. Vol. 80. 066206.

19. Sysoev I.V., Ponomarenko V.I. Reconstruction of the coupling matrix in the ensemble of identical neuron-like oscillators with time delay in coupling. Rus. J. Nonlin. Dyn., 2016, vol. 12, no. 4, pp. 567–576.

20. Sysoev I.V., Ponomarenko V.I., Pikovsky A. Reconstruction of coupling architecture of neural field networks from vector time series // Commun. Nonlinear Sci. Numer. Simulat. 2018. Vol. 57. P. 342–351.

21. Sysoev I.V., Ponomarenko V.I., Prokhorov M.D. Reconstruction of Ensembles of Oscillators with Nonlinear Time-Delay Feedbacks. Tech. Phys. Lett., 2018, vol. 44, pp. 1024–1027.

22. Gouesbet G., Letellier C. Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets // Phys. Rev. E. 1994. Vol. 49. P. 4955–4972.

23. Smirnov D.A., Sysoev I.V., Seleznev E.P., Bezruchko B.P. Reconstructing nonautonomous system models with discrete spectrum of external action. Tech. Phys. Lett., 2003, vol. 29, no. 10, pp. 824–827.

24. Sysoev I.V., Prokhorov M.D., Ponomarenko V.I., Bezruchko B.P. Reconstruction of ensembles of coupled time-delay system from time series // Physical Review E. 2014. Vol. 89. 062911.

25. Belyustina, L.N., Shalfeev, V.D. Theory of a nonlinear system of automatic phase-frequency control. Radiophys Quantum Electron, 1968, vol. 11, pp. 213–220. 

26. Mishchenko M.A. Neuron-like model based on a phase-locked loop. Journal of University of Nizhny Novgorod, 2011, vol. 5, no. 3, pp. 279–282 (in Russian). 

27. Mishchenko M.A., Shalfeev V.D., Matrosov V.V. Neuron-like dynamics in phase-locked loop. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, no. 4, pp. 122–130.

28. Matrosov V.V., Mishchenko M.A., Shalfeev V.D. Neuron-like dynamics of a phase-locked loop // The European Physical Journal. Special Topics. 2013. Vol. 222, no. 10. P. 2399–2405.

29. Sysoev I.V., Sysoeva M.V., Ponomarenko V.I., Prokhorov M.D. Neuron-like dynamics in a phaselocked loop system with delayed feedback. Tech. Phys. Lett., 2020. In press. 

30. Kozlov A.K., Shalfeev V.D. Управление хаотическими колебаниями в генераторе с запаздывающей петлей фазовой автоподстройки. Izvestiya VUZ. Applied Nonlinear Dynamics, 1994, vol. 2, no. 2, pp. 36–48 (in Russian).

31. Bakunov G.M., Matrosov V.V., Shalfeev V.D. On quasi-synchronous regimes in a phase lock loop with the secondorder filter and approximate inclusion of the delay. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, no. 3, pp. 171–179 (in Russian).

32. Kashchenko S.A., Mayorov V.V. Modeli Volnovoy Pamyati. M.: Librocom, 2013, 288 p. (in Russian).

33. Glyzin S.D., Kolesov A.Y., Rozov N.K. Self-excited relaxation oscillations in networks of impulse neurons. Russian Mathematical Surveys, 2015, vol. 70, no. 3, pp. 383–452.

34. Glyzin S.D., Kolesov A.Y., Rozov N.K. On a method for mathematical modeling of chemical synapses. Differential Equations, 2013, vol. 49, no. 10, pp. 1193–1210.

35. Glyzin S.D., Kolesov A.Y., Rozov N.K. Modeling the bursting effect in neuron systems. Mathematical Notes, 2013, vol. 93, no. 5, pp. 682–699.

36. Hodgkin A., Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. Vol. 117. P. 500—544.

37. Mishchenko M.A., Bolshakov D.I., Matrosov V.V. Instrumental implementation of a neuronlike generator with spiking and bursting dynamics based on a phase-locked loop. Tech. Phys. Lett., 2017, vol. 43, pp. 596–599.

38. Sysoev I.V., Prokhorov M.D., Ponomarenko V.I., Bezruchko B.P. Determination of parameters of elements and coupling architecture in ensembles of coupled time-delay systems from their time series. Tech. Phys., 2014, vol. 59, no. 10, pp. 1434–1444.

39. Kapranov M.V. Capture band for phase-locked loop. Journal Radioengineering, 1956, vol. 11, no. 12, p. 37.

40. Belyustina L.N. The study of nonlinear phase-locked loop system. Radiophysics and Quantum Electronics, 1959, vol. 2, I. 2, pp. 277 (in Russian).

41. Sysoev I.V. Reconstruction of ensembles of generalized Van der Pol oscillators from vector time series // Physica D. 2018. Vol. 384–385. P. 1–11.

Received: 
22.04.2020
Accepted: 
08.06.2020
Published: 
31.08.2020