Известия высших учебных заведений

Прикладная нелинейная динамика

ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


Для цитирования:

Сысоева М. В., Сысоев И. В., Пономаренко В. И., Прохоров М. Д. Реконструкция уравнений нейроподобного осциллятора, моделируемого системой фазовой автоподстройки частоты с запаздыванием, по скалярному временному ряду // Известия вузов. ПНД. 2020. Т. 28, вып. 4. С. 397-413. DOI: 10.18500/0869-6632-2020-28-4-397-413

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 198)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
530.182

Реконструкция уравнений нейроподобного осциллятора, моделируемого системой фазовой автоподстройки частоты с запаздыванием, по скалярному временному ряду

Авторы: 
Сысоева Марина Вячеславовна, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Сысоев Илья Вячеславович, Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского (СГУ)
Пономаренко Владимир Иванович, Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
Прохоров Михаил Дмитриевич, Саратовский филиал Института радиотехники и электроники имени В.А. Котельникова РАН (СФ ИРЭ)
Аннотация: 

Цель настоящего исследования – разработка методики реконструкции уравнений нейроподобного осциллятора, описываемого моделью системы фазовой автоподстройки частоты с запаздыванием, по скалярному временному ряду наблюдаемой. Методы. Располагая скалярным рядом только одной переменной, соответствующей трансмембранному потенциалу, для восстановления вектора состояния ещё одна переменная получается численным дифференцированием со сглаживанием полиномом, а третья – численным интегрированием методом Симпсона. Далее вводится целевая функция, описывающая длину нелинейной функции при пробном времени запаздывания, и проводится её минимизация. Результаты. Предложенным методом удаётся реконструировать время запаздывания, эффективные параметры системы и нелинейную функцию модели в различных периодических и хаотических режимах, включая режимы перемежаемости. Метод работоспособен в том числе при наличии 1-процентного измерительного шума. Заключение. Описанный метод полезен как средство реконструкции моделей нейронов по экспериментальным данным внеклеточных или внутриклеточных записей из мозга или в культуре.

Список источников: 
  1. Cremers J., Hubler A. Construction of Differential Equations from Experimental Data // Zeitschrift fur Naturforschung – Section A Journal of Physical Sciences. 1987. Vol. 42, no. 8. P. 797–802.
  2. Безручко Б.П., Смирнов Д.А. Математическое моделирование и хаотические временные ряды. Саратов: ГосУНЦ «Колледж», 2005. 320 с. 
  3. Besruchko B.P., Smirnov D.A. Constructing nonautonomous differential equations from experimental time series // Phys. Rev. E. 2000. Vol. 63. 016207
  4. Smirnov D.A., Bezruchko B.P. Detection of coupling in ensembles of stochastic oscillators // Phys. Rev. E. 2009. Vol. 79. 046204.
  5. Пономаренко В.И., Прохоров М.Д., Караваев А.С., Безручко Б.П. Определение параметров систем с запаздывающей обратной связью по хаотическим временным реализациям // ЖЭТФ. 2005. Т. 127, № 3. С. 515–527.
  6. Baake E., Baake M., Bock H.G., Briggs K.M. Fitting ordinary differential equations to chaotic data // Phys. Rev. A. 1992. Vol. 45, no. 8. P. 5524–5529.
  7. Gorodetskyi V., Osadchuk M. Analytic reconstruction of some dynamical systems // Physics Letters, Section A: General, Atomic and Solid State Physics. 2013. Vol. 377, no. 9. P. 703–713.
  8. Bezruchko B.P., Smirnov D.A., Sysoev I.V. Identification of chaotic systems with hidden variables (modified Bock’s algorithm) // Chaos, Solitons & Fractals. 2006. Vol. 29. P. 82–90.
  9. Packard N., Crutchfield J., Farmer J., Shaw R. Geometry from a Time Series // Phys. Rev. Lett. 1980. Vol. 45. P. 712–716.
  10. Fowler A., Kember G. Delay recognition in chaotic time series // Physics Letters A. 1993. Vol. 175, no. 6. P. 402–408.
  11. Hegger R., Bunner M.J., Kantz H., Giaquinta A. Identifying and Modeling Delay Feedback Systems // Phys. Rev. Lett. 1998. Vol. 81, no. 3. P. 558–561.
  12. Bunner M.J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A. Reconstruction of systems with delayed feedback: I. Theory // The European Physical Journal D. 2000. Vol. 10, no. 2. P. 165–176.
  13. Tian Y.-C., Gao F. Extraction of delay information from chaotic time series based on information entropy // Physica D: Nonlinear Phenomena. 1997. Vol. 108, no. 1. P. 113–118.
  14. Bunner M.J., Meyer Th., Kittel A., Parisi, J. Recovery of the time-evolution equation of timedelay systems from time series // Phys. Rev. E. 1997. Vol. 56, no. 5. P. 5083–5089.
  15. Voss H., Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations // Physics Letters A. 1997. Vol. 234, no. 5. P. 336–344.
  16. Ellner S.P., Kendall B.E., Wood S.N., McCauley E., Briggs C.J. Inferring mechanism from timeseries data: Delay-differential equations // Physica D: Nonlinear Phenomena. 1997. Vol. 110, no. 3. P. 182–194.
  17. Prokhorov M.D., Ponomarenko V.I., Khorev V.S. Recovery of delay time from time series based on the nearest neighbor method // Physics Letters A. 2013. Vol. 377, no. 43. P. 3106–3111.
  18. Prokhorov M.D., Ponomarenko V.I. Reconstruction of time-delay systems using small impulsive disturbances // Phys. Rev. E. 2009. Vol. 80. 066206.
  19. Сысоев И.В., Пономаренко В.И. Реконструкция матрицы связей ансамбля идентичных нейроподобных осцилляторов с запаздыванием в связи // Нелинейная динамика. 2016. Т. 12, № 4. С. 567–576.
  20. Sysoev I.V., Ponomarenko V.I., Pikovsky A. Reconstruction of coupling architecture of neural field networks from vector time series // Commun. Nonlinear Sci. Numer. Simulat. 2018. Vol. 57. P. 342–351.
  21. Сысоев И.В., Пономаренко В.И., Прохоров М.Д. Реконструкция ансамблей осцилляторов с нелинейными запаздывающими связями // Письма в ЖТФ. 2018. Т. 44, № 22. С. 57–64.
  22. Gouesbet G., Letellier C. Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets // Phys. Rev. E. 1994. Vol. 49. P. 4955–4972.
  23. Смирнов Д.А., Сысоев И.В., Селезнев Е.П., Безручко Б.П. Реконструкция моделей неавтономных систем с дискретным спектром воздействия // Письма в ЖТФ. 2003. Т. 29, № 19. С. 69–76.
  24. Sysoev I.V., Prokhorov M.D., Ponomarenko V.I., Bezruchko B.P. Reconstruction of ensembles of coupled time-delay system from time series // Physical Review E. 2014. Vol. 89. 062911.
  25. Белюстина Л.Н., Шалфеев В.Д. К теории нелинейной системы частотно-фазовой автоподстройки частоты // Известия высших учебных заведений. Радиофизика. 1968. Т. 11, № 3. С. 383–396.
  26. Мищенко М.А. Нейроноподобная модель на основе системы фазовой автоподстройки частоты // Вестник Нижегородского университета им. Н.И. Лобачевского. 2011. Т. 5, № 3. С. 279–282.
  27. Мищенко М.А., Шалфеев В.Д., Матросов В.В. Нейроноподобная динамика в системе фазовой синхронизации // Известия вузов. ПНД. 2012. Т. 20, № 4. С. 122–130.
  28. Matrosov V.V., Mishchenko M.A., Shalfeev V.D. Neuron-like dynamics of a phase-locked loop // The European Physical Journal. Special Topics. 2013. Vol. 222, no. 10. P. 2399–2405.
  29. Сысоев И.В., Сысоева М.В., Пономаренко В.И., Прохоров М.Д. Нейроподобная динамика в системе фазовой автоподстройки частоты с запаздывающей обратной связью // Письма в ЖТФ. 2020. Т. 46, № 14. С. 36–38.
  30. Козлов А.К., Шалфеев В.Д. Управление хаотическими колебаниями в генераторе с запаздывающей петлей фазовой автоподстройки // Известия вузов. ПНД. 1994. Т. 2, № 2. С. 36–48.
  31. Бакунов Г.М., Матросов В.В., Шалфеев В.Д. О квазисинхронных режимах в системе фазовой автоподстройки частоты с фильтром второго порядка при приближенном учете запаздывания // Известия вузов. ПНД. 2011. Т. 19, № 3. С. 171–179.
  32. Кащенко С.А., Майоров В.В. Модели волновой памяти. М.: Либроком, 2013. 288 с.
  33. Глызин С. Д., Колесов А.Ю., Розов Н.Х. Релаксационные автоколебания в сетях импульсных нейронов // Успехи математических наук. 2015. Т. 70, № 3(423). С. 3–76.
  34. Глызин С. Д., Колесов А.Ю., Розов Н.Х. Об одном способе математического моделирования химических синапсов // Дифференциальные уравнения. 2013. Т. 49, № 10. С. 1227–1244.
  35. Глызин С. Д., Колесов А.Ю., Розов Н.Х. Моделирование эффекта взрыва в нейронных системах // Математические заметки. 2013. Т. 93, № 5. С. 682–699.
  36. Hodgkin A., Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. Vol. 117. P. 500—544.
  37. Мищенко М.А., Большаков Д.И., Матросов В.В. Аппаратная реализация нейроподобного генератора с импульсной и пачечной динамикой на основе системы фазовой синхронизации // Письма в ЖТФ. 2017. Т. 43, № 13. C. 10–18.
  38. Сысоев И.В., Прохоров М.Д., Пономаренко В.И., Безручко Б.П. Определение параметров элементов и архитектуры связей в ансамблях связанных систем с запаздыванием по временным рядам // Журнал технической физики. 2014. Т. 84, № 10. С. 16–26.
  39. Капранов М.В. Полоса захвата при фазовой автоподстройке частоты // Радиотехника. 1956. Т. 11, № 12. С. 37.
  40. Белюстина Л.Н. Исследование нелинейной системы фазовой автоподстройки частоты // Изв. вузов. Радиофизика. 1959. Т. 2, № 2. С. 277.
  41. Sysoev I.V. Reconstruction of ensembles of generalized Van der Pol oscillators from vector time series // Physica D. 2018. Vol. 384–385. P. 1–11.
Поступила в редакцию: 
22.04.2020
Принята к публикации: 
08.06.2020
Опубликована: 
31.08.2020