ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Dmitriev V. V., Smolyansky S. A., Yahibbaev R. M. Search for approximate methods for description of nonlinear vacuum e- e+ pairs creation processes in electromagnetic fields. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 3, pp. 27-37. DOI: 10.18500/0869-6632-2015-23-3-27-37

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 224)
Language: 
Russian
Article type: 
Article
UDC: 
530.145; 530.182

Search for approximate methods for description of nonlinear vacuum e- e+ pairs creation processes in electromagnetic fields

Autors: 
Dmitriev Vadim Vladimirovich, Saratov State University
Smolyansky Stanislav Aleksandrovich, Saratov State University
Yahibbaev Ravil Maratovich, Saratov State University
Abstract: 

The simplest kinetic equation for description of the electron-positron plasma vacuum creation in a strong linearly polarized electric («laser») field was reduced to the nonlinear ordinary differential equation of the second order. The corresponding truncated equation without the dissipative contributions was obtained also. In area of the tunnel mechanism action the non-local under an external field solutions for the residual electron-positron plasma was first obtained. In general case, the upper estimations for the kinetic equation solutions was found on the Riccati equation basis that is a result of application of the stereographic projection method to the basic kinetic equation.

Reference: 
  1. Schwinger J. // Phys. Rev. 1951. Vol. 82, P. 664.
  2. Gregori G., Blaschke D.B. et al. // High Energy Density Physics. 2010. Vol. 6, No 2. P. 166.
  3. Brezin E., Itzykson C. // Phys. Rev. D. 1970. Vol. 2. P. 1191.
  4. Bulanov S.S., Narozhny N.B., Mur V.D., Popov. V.S. // JETP. 2006. Vol. 102, No 1. P. 9.
  5. Smolyansky S.A., Dmitriev V.V., Panferov A.D., Prozorkevich A.V., Blaschke D., Juchnowski L. // Proceedings of the XXII Baldin ISHEPP. 2014. P. 043.
  6. Schmidt S., Blaschke D., Ropke G., Smolyansky S.A., Prozorkevich A.V., Toneev V.D. // IJMP. E. 1998. Vol. 07, No 06. P. 709.
  7. Fedotov A.M., Gelfer E.G., Korolev K.Yu., Smolyansky S.A. // Phys. Rev. D. 2011. Vol. 83. P. 025011.
  8. Smolyansky S.A., Bonitz M., Prozorkevich A.V. // Contrib. Plasma Phys. 2013. Vol. 53, No 10. P. 788.
  9. Smolyansky S.A., Prozorkevich A.V., Dmitriev V.V., Tarakanov A.V. // IJMP. E. 2014. Vol. 23, No 11. P. 1450068.
  10. Kamke E. Differentialgleichungen Losungsmethoden und Losungen. Vieweg+Teubner Verlag, 1977. 670 p.
  11. Nayfeh Ali H. Perturbation Methods. John Wiley & Sons, New York, 2000. 441 p.
  12. Fedoryuk M.V. Asymptotic Analysis: Linear Ordinary Differential Equations. Springer-Verlag Berlin Heidelberg, 1993. 363 p.
  13. Gliner E.B. // Physics-Uspekhi. 2002. Vol. 45, No 6. P. 213.
  14. Yokomizo N. // Annals of Phys. 2014. Vol. 351. P. 166.
  15. Narozhnyi N.B., Nikishov A.I. // Theor. and Math. Phys. 1976. Vol. 26, No 1. P. 9.
  16. Webb G.M., Hu Q., le Roux J.A., Dasgupta B., Zank G.P. // J. Phys. A: Math. Theor. 2012. Vol. 45, No 2. P. 025203.
Received: 
26.05.2015
Accepted: 
26.05.2015
Published: 
30.10.2015
Short text (in English):
(downloads: 92)