ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Shabunin A. V. Selection of spatial modes in an ensemble of non-locally coupled chaotic maps. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, iss. 1, pp. 109-124. DOI: 10.18500/0869-6632-2022-30-1-109-124

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 745)
Full text PDF(En):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
519.9, 621.372

Selection of spatial modes in an ensemble of non-locally coupled chaotic maps

Autors: 
Shabunin Aleksej Vladimirovich, Saratov State University
Abstract: 

Purpose of this work is to determine regularities of formation of spatial structures in an ensemble of chaotic systems with non-local diffusion couplings and to study how these structures depend on the wave response of the digital filter formed by the ensemble couplings structure. Methods. The study was carried out by numerical simulation of an ensemble of logistic maps, calculation of its typical oscillatory regimes and their spectral analysis. The network was considered as a digital filter with a frequency response depending on the coupling parameters. Correlation between the spatial spectra and the amplitude-frequency response of the coupling filter and the mutual coherence of oscillations when the coupling parameters change were considered. Results. The system of couplings between chaotic maps behaves like a wave filter with selective properties, allowing spatial modes with certain wavelengths to exist and suppressing others. The selection of spatial modes is based on the wave characteristic of the coupling filter, the type of which is determined by the radius and the magnitude of couplings. At strong coupling the wave characteristics for ensembles with local and non-local couplings are qualitatively different, therefore they demonstrate essencially different behavior. Discussion. Using spectral methods for dynamics analysis systems with complex network topologies seems to be a promising approach, especially for research of synchronization and multistability in ensembles of chaotic oscillators and maps. The found regularities generalize the results known for ensembles of maps with local couplings. They also can be applied to ensembles of self-sustained oscillators. 

Acknowledgments: 
This work was supported by Russian Foundation for Basic Research and DFG, grant No 20-52-12004
Reference: 
  1. Anishchenko VS, Postnov DE, Safonova MA. Dimension and physical properties of chaotic attractors in a chain of coupled oscillators. Sov. Tech. Phys. Lett. 1985;11(12):621.
  2. Anishchenko VS, Aranson IS, Postnov DE, Rabinovich MI. Spatial synchronization and development bifurcations in a chain of coupled oscillators. Soviet Physics. Doklady. 1986;31(2):169.
  3. Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics. 1983;69(1):32–47. DOI: 10.1143/PTP.69.32.
  4. Yamada T, Fujisaka H. Stability theory of synchronized motion in coupled-oscillator systems. II: The mapping approach. Progress of Theoretical Physics. 1983;70(5):1240–1248. DOI: 10.1143/PTP.70.1240.
  5. Anishchenko VS, Vadivasova TE, Postnov DE, Safonova MA. Synchronization of chaos. International Journal of Bifurcation and Chaos. 1992;2(3):633–644. DOI: 10.1142/S0218127492000756.
  6. Heagy JF, Carroll TL, Pecora LM. Synchronous chaos in coupled oscillator systems. Phys. Rev. E. 1994;50(3):1874–1884. DOI: 10.1103/PhysRevE.50.1874.
  7. Ren L, Ermentrout B. Phase locking in chains of multiple-coupled oscillators. Physica D. 2000;143(1–4):56–73. DOI: 10.1016/S0167-2789(00)00096-8.
  8. Shabunin AV, Akopov AA, Astakhov VV, Vadivasova TE. Running waves in a discrete anharmonic self-oscillating medium. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(4):37–55 (in Russian). DOI: 10.18500/0869-6632-2005-13-4-37-55.
  9. Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Berlin: Springer; 1984. 158 p. DOI: 10.1007/978-3-642-69689-3.
  10. Cross MC, Hohenberg PC. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993;65(3): 851–1112. DOI: 10.1103/RevModPhys.65.851.
  11. Mosekilde E, Maistrenko Y, Postnov D. Chaotic Synchronization: Applications to Living Systems. Singapore: World Scientific; 2002. 440 p. DOI: 10.1142/4845.
  12. Arecchi FT, Meucci R, Puccioni G, Tredicce J. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 1982;49(17):1217–1220. DOI: 10.1103/PhysRevLett.49.1217.
  13. Astakhov VV, Bezruchko BP, Gulyaev YV, Seleznev EP. Multistable states in dissipative coupled Feigenbaum’s systems. Tech. Phys. Lett. 1989;15(3):60–65 (in Russian).
  14. Astakvov VV, Bezruchko BP, Pudovochkin OB, Seleznev EP. Phase multistability and setting of the oscillations in nonlinear systems with period-doublings. Journal of Communications Technology and Electronics. 1993;38(2):291–295 (in Russian).
  15. Prengel F, Wacker A, Scholl E. Simple model for multistability and domain formation in semi-conductor superlattices. Phys. Rev. B. 1994;50(3):1705–1712. DOI: 10.1103/PhysRevB.50.1705.
  16. Sun NG, Tsironis GP. Multistability of conductance in doped semiconductor superlattices. Phys. Rev. B. 1995;51(16):11221–11224. DOI: 10.1103/PhysRevB.51.11221.
  17. Foss J, Longtin A, Mensour B, Milton J. Multistability and delayed recurrent loops. Phys. Rev. Lett. 1996;76(4):708–711. DOI: 10.1103/PhysRevLett.76.708.
  18. Abrams DM, Strogatz SH. Chimera states for coupled oscillators. Phys. Rev. Lett. 2004;93(17): 174102. DOI: 10.1103/PhysRevLett.93.174102.
  19. Omelchenko I, Maistrenko Y, Hovel P, Scholl E. Loss of coherence in dynamical networks: Spatial chaos and chimera states. Phys. Rev. Lett. 2011;106(23):234102. DOI: 10.1103/PhysRevLett.106.234102.
  20. Hagerstrom AM, Murphy TE, Roy R, Hovel P, Omelchenko I, Scholl E. Experimental observation of chimeras in coupled-map lattices. Nature Physics. 2012;8(9):658–661. DOI: 10.1038/nphys2372.
  21. Bogomolov SA, Strelkova GI, Scholl E, Anishchenko VS. Amplitude and phase chimeras in anensemble of chaotic oscillators. Tech. Phys. Lett. 2016;42(7):765–768. DOI: 10.1134/S1063785016070191.
  22. Gopal R, Chandrasekar VK, Venkatesan A, Lakshmanan M. Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling. Phys. Rev. E. 2014;89(5): 052914. DOI: 10.1103/PhysRevE.89.052914.
  23. Shabunin A, Astakhov V, Kurths J. Quantitative analysis of chaotic synchronization by means of coherence. Phys. Rev. E. 2005;72(1):016218. DOI: 10.1103/PhysRevE.72.016218.
  24. Shabunin AV. Multistability of periodic orbits in ensembles of maps with long-range couplings. Izvestiya VUZ. Applied Nonlinear Dynamics. 2018;26(2):5–23 (in Russian). DOI: 10.18500/0869-6632-2018-26-2-5-23.
  25. Shabunin A. Selective properties of diffusive couplings and their influence on spatiotemporal chaos. Chaos. 2021;31(7):073132. DOI: 10.1063/5.0054510.
  26. Kaneko K. Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency. Physica D. 1989;34(1–2):1–41. DOI: 10.1016/0167-2789(89)90227-3.
Received: 
14.08.2021
Accepted: 
05.10.2021
Published: 
31.01.2022