ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Landa P. S., Ushakov V. G., Ebeling W. Self-oscillations in dissipative ring Toda chain. Izvestiya VUZ. Applied Nonlinear Dynamics, 2000, vol. 8, iss. 6, pp. 44-52. DOI: 10.18500/0869-6632-2000-8-6-44-52

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
534.1

Self-oscillations in dissipative ring Toda chain

Autors: 
Landa Polina Solomonovna, Lomonosov Moscow State University
Ushakov Vadim Gennadevich, Lomonosov Moscow State University
Ebeling Werner, Humboldt University of Berlin
Abstract: 

We study here different modes of self-oscillations in ring Toda chain with negative friction. Assuming that at small friction the shape of self-oscillations is close to one of the known Toda soliton-like solutions we use analytical methods in combination with numerical ones for study о the self-oscillations. We show that а Toda chain consisting of N elements possesses N+1 different modes of self-oscillations. Among them two modes correspond to left and right rotations of the chain as a whole with a constant velocity. Each of the other modes represents а combination of moving soliton and the rotation with a velocity depending on the mode number. Only for the mode corresponding to anti-phase oscillation of the chain neighboring elements (such oscillation are possible for an even N) the constant component of velocity is equal to zero.

Key words: 
Reference: 
  1. Toda М. Waves in nonlinear lattice. Progr. Theor. Phys. Suppl. 1970;45:174-200. DOI: 10.1143/PTPS.45.174.
  2. Toda M. Studies of nonlinear lattice. Phys. Reports. 1975;18(1)1-123. DOI: 10.1016/0370-1573(75)90018-6.
  3. Toda M. Theory of Nonlinear Lattices. Berlin: Springer; 1989. 225 p. DOI: 10.1007/978-3-642-83219-2.
  4. Landa PS, Vygodin VA. Self-locking of laser modes. Sov. J. Quantum Electron. 1977;7(4):428-431. DOI: 10.1070/QE1977v007n04ABEH009704.
  5. Неnоn M. Integrals оf the Toda lattice. Phys. Rev. B. 1974;9(4):1921-1923. DOI: 10.1103/PhysRevB.9.1921.
  6. Неnоn M, Heiles С. The applicability of the third integral of motion: Some numerical experiments. Astron. J. 1964;69(1):73-79. DOI: 10.1086/109234.
  7. Kerner VS, Osipov VV. Autosolitons. M.: Nauka; 1991. 200 p. (in Russian).
  8. Christov СI, Velarde MG. Dissipative solitons. Physica D. 1995;86(1-2):323-347. DOI: 10.1016/0167-2789(95)00111-G.
  9. Linde H, Velarde MG, Wierschem A, Waldhelm W, Loeschcke K, Rednikov AY. Interfacial wave motions due to Marangoni instability. J. Colloid Interface Sci. 1997;188(1):16-26. DOI: 10.1006/jcis.1997.4660.
  10. Makarov VA, Ebeling W, Velarde MG. Soliton-like waves оn dissipative Toda lattices. Int. J. Bifurc. Chaos. 2000;10(5):1075-1089. DOI: 10.1142/S0218127400000761.
  11. Ebeling W, Erdmann U, Dunkel J, Jenssen M. Nonlinear dynamics and fluctuations оf dissipative Toda chains. J. Stat. Phys. 2000;101:443-457. DOI: 10.1023/A:1026407415248.
  12. Landa PS. Nonlinear Oscillations and Waves. M.: Nauka; 1997. 495 p.
  13. Jahnke E, Emde F, Losch F. Tafeln Hoherer Funktionen. Stuttgart: B.G. Teubner Verlagsgesellschaft; 1960. 318 p. (in German).
  14. Whitham GB. Linear and Nonlinear Waves. М.: Wiley; 1974. 660 p.
  15. Makarov V, Del Rio E, Ebeling W, Velarde M. Oscillatory modes in аn array of electrical Rayleigh — Toda circuits. Instituto Pluridisciplinar, UCM Madrid Preprint; 2000.
Received: 
23.09.2000
Accepted: 
19.01.2001
Published: 
25.03.2001