ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Brazhe R. A., Kudelin O. N. Semiconductor analogue of Lorenz turbulence model in the circular thermoconvective cell. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 1, pp. 114-122. DOI: 10.18500/0869-6632-2005-13-1-114-122

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 119)
Language: 
Russian
Article type: 
Article
UDC: 
621.382:538.915:532.529.2

Semiconductor analogue of Lorenz turbulence model in the circular thermoconvective cell

Autors: 
Brazhe Rudolf Aleksandrovich, Federal State Budget Educational Institution of Higher Professional Education "Ulyanovsk State Technical University"
Kudelin Oleg Nikolaevich, JSC "Scientific and Production Association" Mars "
Abstract: 

A set of the nonlinear equations, approximately describing thermoelectrohydrodynamical convection in circular semiconductor cell, which comes to Lorenz model, is obtained. The dependences of the model parameters of materials and ring size, of affixed electric field and of temperature gradient are investigated.

Key words: 
Reference: 
  1. Brazhe RA, Kudelin ON. Conditions for observing thermoelectrohydrodynamic convection in real semiconductors. In: Electronic Equipment. Collection of Scientific Papers. Ulyanovsk; 2003. P. 3–6 (in Russian).
  2. Brazwe RA, Kudelin ON. Mathematical model of thermoelectrohydrodynamic convection in semiconductors in the presence of charge carriers collisions. Mathematical Models and Computer Simulations. 2005;17(2):109–118 (in Russian).
  3. Brazhe RA, Kudelin ON. Lorentz attractor in the nonlinear regime of thermoelectrohydrodynamic convection in a flat semiconductor layer. Bulletin of the UlSTU. Ser. «Natural Sciences». 2004;(2):27–29 (in Russian).
  4. Lorenz EH. Deterministic nonperiodic flow. J. Atmos. Sci. 1963;20(2):130–141. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
  5. Welander P. On the oscillatory instability of a differentially heated fluid loop. J. Fluid Mech. 1967;29(1):17–30. DOI: 10.1017/S0022112067000606.
  6. Motorova EA, Neimark YN. On the stability of a nonlinear distributed natural circulation model. Automation and Remote Control. 1974;(3):28–36 (in Russian).
  7. Creveling HF, De Paz JF, Baladi JY, Schoenhals RI. Stability characteristics of a single-phase free convection loop. J. Fluid Mech. 1975;67(1):65–84. DOI: 10.1017/S0022112075000171.
  8. Lifshits EM, Pitaevsky LP. Theoretical Physics. Physical Kinetics. Moscow: Nauka; 1972. 536 p. (in Russian).
  9. Anile AM, Romano V, Russo G. Extended hydrodynamical model of carrier transport in semiconductors. SIAM J. Appl. Math. 2000;61(1):74–101. DOI: 10.1137/S003613999833294X.
  10. Landa PS. Nonlinear Oscillations and Waves in Dynamical Systems. Dordrecht: Springer; 1996. 544 p. DOI: 10.1007/978-94-015-8763-1.
  11. Haken H. Synergetics: An Introduction. Berlin: Springer; 1983. 390 p. DOI: 10.1007/978-3-642-88338-5.
  12. Rabinovich MI, Trubetskov DI. Oscillations and Waves in Linear and Nonlinear Systems. Dordrecht: Springer; 1989. 578 p. DOI: 10.1007/978-94-009-1033-1.
  13. Emtsev VV. Impurities and Point Defects in Semiconductors. Moscow: Nauka; 1986. 248 p. (in Russian).
  14. Kikoin IK. Tables of Physical Quantities. Moscow: Nauka; 1989. 1008 p. (in Russian).
  15. Dmitriev AS, Panas AI, Starkov SO. Dynamic chaos as a paradigm of modern communication systems. Зарубежная радиоэлектроника. Telecommunications and Radio Engineering. 1997;(10):4–26 (in Russian).
  16. Dmitriev AS, Starkov SO. Messaging using chaos and classical information theory. Telecommunications and Radio Engineering. 1998;(11):4–32 (in Russian).
Received: 
24.12.2004
Accepted: 
22.03.2005
Published: 
30.09.2005
Short text (in English):
(downloads: 78)