ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Anikin V. M. Spectral problems for the Perron–Frobenius operator. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 4, pp. 35-48. DOI: 10.18500/0869-6632-2009-17-4-35-48

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 375)
Language: 
Russian
Article type: 
Review
UDC: 
517.9

Spectral problems for the Perron–Frobenius operator

Autors: 
Anikin Valerij Mihajlovich, Saratov State University
Abstract: 

A method of solving the spectral problem for the Perron–Frobenius operator of onedimensional piece­wise linear chaotic maps is demonstrated. The method is based on introducing generating functions for the eigenfunctions of the operator. It is shown that the behavior of autocorrelation functions for chaotic maps depends on eigenvalues of the Perron­Frobenius operator.

Reference: 
  1. Prigozhin IR, Stengers I. Time, chaos, quantum. To solve the paradox of time. Moscow: Progress; 1994. 265 p. (In Russian).
  2. Lifshitz EM, Khalatnikov IM, Sinai YaG, Khanin KM, Shchur LN. On the stochastic properties of relativistic cosmological models near the singularity. JETP Letters. 1983;38(2):79–82.
  3. Anikin VM, Golubentsev AF. Analytical models of deterministic chaos. Ed. Trubetskov DI. Moscow: Fizmatlit; 2007. 328 p. (In Russian).
  4. Iosifescu M, Kraaikamp C. Metrical theory of continued fractions. Boston: Kluwer, Inc.; 2002. 383 p.
  5. Blanc LM. Sustainability and localization in chaotic dynamics. Moscow: MCCME; 2001. 351 p. (In Russian).
  6. Lasota A, Mackey MC. Probabilistic properties of deterministic systems. Cambridge: Cambridge University Press; 1985. 368 p.
  7. Babenko KI, Yuryev SP. On a problem of Gauss. Preprint Applied Mathematics Institute, Academy of Sciences of the USSR. №63. Moscow. 1977. 69 p. (In Russian).
  8. Kuzmin RO. On a problem of Gauss. Dokl. Akad. Nauk SSSR; 1928. P. 375. (In Russian).
  9. Knut D. The art of programming for computers. V. 2. Obtained algorithms. Moscow: Mir; 1977. P. 391. (In Russian).
  10. Knut D. The art of programming for computers. V. 2. Obtained algorithms. Moscow: Williams; 2000. P. 407. (In Russian).
  11. Anikin VM. Gaussian Mapping: Evolutionary and Probabilistic Properties. Saratov: Saratov University Publishing; 2007. 80 p. (In Russian).
  12. Dorfle M. Spectrum and eigenfunctions of the Frobenius-Perron operator of the tent map. J. Stat. Phys. 1985;40(1/2):93–132. DOI: 10.1007/BF01010528.
  13. Gaspard P. r-adic One-dimensional maps and the Euler summation formula. J. Phys. A: Math. Gen. 1992;25:483–485. DOI: 10.1088/0305-4470/25/8/017.
  14. Antoniou I, Tasaki S. Generalized spectral decomposition of mixing dynamical systems. Int. J. Quantum Chemistry. 1993;46(3):425–474. DOI: 10.1002/QUA.560460311.
  15. Driebe DJ, Ordonez GO. Using symmetries of the Perron-Frobenius operator to determine spectral decompositions. Phys. Let. 1996;211:204–210. DOI: 10.1016/0375-9601(96)00006-0.
  16. Antoniou I, Dmitrieva L, Kuperin Yu, Melnikov Yu. Resonances and extension of dynamics to rigged Hilbert space. Computers Math. Applic. 1997;34(5/6):399–425. DOI: 10.1016/s0898-1221(97)00148-x.
  17. Anikin VM, Remizov AS, Arkadakskij SS. Eigenfunctions and eigenvalues of the Perron–Frobenius operator of piece-wise linear chaotic maps. Izvestiya VUZ. Applied Nonlinear Dynamics. 2007;15(2):62–75. DOI: 10.18500/0869-6632-2007-15-2-62-75.
  18. Golubencev AF, Anikin VM. Invariant subspaces for linear evolution operators of chaotic maps. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(1-2):3-17. DOI: 10.18500/0869-6632-2005-13-1-3-37.
Received: 
07.07.2009
Accepted: 
07.07.2009
Published: 
30.10.2009
Short text (in English):
(downloads: 105)