ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Kuznetsov A. P., Sedova Y. V., Sataev I. R. Structure of control parameters space of nonidentical coupled systems with period-doublings. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 5, pp. 46-57. DOI: 10.18500/0869-6632-2004-12-5-46-57

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9

Structure of control parameters space of nonidentical coupled systems with period-doublings

Autors: 
Kuznetsov Aleksandr Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Sedova Yuliya Viktorovna, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Sataev Igor Rustamovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Abstract: 

The structure of control parameters space of nonidentical coupled logistic maps is discussed. The critical points of codimension two connected with accumulation of bifurcation situations of codimension two are found. The structure of control parameters space of two coupled Duffing oscillators is discussed.

Key words: 
Acknowledgments: 
The work was supported by the Russian Foundation for Basic Research (grant № 03-02-16074), American Foundation for Civic Research and Development (CRDF, grant № REC-006) and nonprofit program fund «Династия» with the assistance of МЦФФМ.
Reference: 

1. Anishchenko VS, Vadivasova TE, Astakhov VB. Nonlinear dynamics of chaotic and stochastic systems. Saratov: SSU Publishing House, 1999. 368 p.

2. Mosekilde Е, Maistrenko Yu, Роstnov D. Chaotic synchronization. Applications to living systems. World Scientific Series on Nonlinear Science. Series А. 2002;42. 440 p. DOI: 10.1142/4845.

3. Jian-Min Yuan, Mingwhei Tung, Ра Hsuan Feng, Lorenzo M. Narducci. Instability and irregular behavior of coupled logistic equations. Phys. Rev. A, 1983;28(3): 1662.

4. Kuznetsov SP. Cynamic chaos. Moscow: Fizmatlit; 2001. 296 p.

5. Arnold VI. Geometrical Methods in the Theory of Ordinary Differential Equations. Izhevsk: Regular and chaotic dynamics; 1999. 378 p.

6. Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Moscow – Izhevsk: Institute for Computer Research; 2002. 560 p.

7. Kuznetsov AP, Kuznetsov SP, Sataev IR. A variety оf period-doubling universality classes in multi-parameter analysis of transition to chaos. Physica D. 1997;109:91–112.

8. Kuznetsov AP, Kuznetsov SP, Sataev IR. Hybrid of period doubling and tangent bifurcation: quantitative universality and two-parameter scaling. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(4):3–11.

9. Kuznetsov SP, Sataev IR. Period-doubling for two-dimensional non-invertible maps: Renormalization group analysis and quantitative universality. Physica D. 1997;101:249–269.

10. Kuznetsov SP, Sataev IR. Universality and scaling for the breakup оf phase synchronization аt the onset оf chaos in а periodically driven Rossler oscillator. Phys. Rev. E. 2001;64(4):046214–046220.

11. Kuznetsov AP, Kuznetsova AYu, Sataev IR. On the critical behavior of a mapping with a Neumark–Saker bifurcation when phase synchronization breaks down at the limiting point of the Feigenbaum cascade. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(1):12–18.

Received: 
19.11.2003
Accepted: 
21.09.2004
Published: 
23.03.2005