For citation:
Kuznetsov A. P., Sedova Y. V., Sataev I. R. Structure of control parameters space of nonidentical coupled systems with period-doublings. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 5, pp. 46-57. DOI: 10.18500/0869-6632-2004-12-5-46-57
Structure of control parameters space of nonidentical coupled systems with period-doublings
The structure of control parameters space of nonidentical coupled logistic maps is discussed. The critical points of codimension two connected with accumulation of bifurcation situations of codimension two are found. The structure of control parameters space of two coupled Duffing oscillators is discussed.
1. Anishchenko VS, Vadivasova TE, Astakhov VB. Nonlinear dynamics of chaotic and stochastic systems. Saratov: SSU Publishing House, 1999. 368 p.
2. Mosekilde Е, Maistrenko Yu, Роstnov D. Chaotic synchronization. Applications to living systems. World Scientific Series on Nonlinear Science. Series А. 2002;42. 440 p. DOI: 10.1142/4845.
3. Jian-Min Yuan, Mingwhei Tung, Ра Hsuan Feng, Lorenzo M. Narducci. Instability and irregular behavior of coupled logistic equations. Phys. Rev. A, 1983;28(3): 1662.
4. Kuznetsov SP. Cynamic chaos. Moscow: Fizmatlit; 2001. 296 p.
5. Arnold VI. Geometrical Methods in the Theory of Ordinary Differential Equations. Izhevsk: Regular and chaotic dynamics; 1999. 378 p.
6. Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Moscow – Izhevsk: Institute for Computer Research; 2002. 560 p.
7. Kuznetsov AP, Kuznetsov SP, Sataev IR. A variety оf period-doubling universality classes in multi-parameter analysis of transition to chaos. Physica D. 1997;109:91–112.
8. Kuznetsov AP, Kuznetsov SP, Sataev IR. Hybrid of period doubling and tangent bifurcation: quantitative universality and two-parameter scaling. Izvestiya VUZ. Applied Nonlinear Dynamics. 1995;3(4):3–11.
9. Kuznetsov SP, Sataev IR. Period-doubling for two-dimensional non-invertible maps: Renormalization group analysis and quantitative universality. Physica D. 1997;101:249–269.
10. Kuznetsov SP, Sataev IR. Universality and scaling for the breakup оf phase synchronization аt the onset оf chaos in а periodically driven Rossler oscillator. Phys. Rev. E. 2001;64(4):046214–046220.
11. Kuznetsov AP, Kuznetsova AYu, Sataev IR. On the critical behavior of a mapping with a Neumark–Saker bifurcation when phase synchronization breaks down at the limiting point of the Feigenbaum cascade. Izvestiya VUZ. Applied Nonlinear Dynamics. 2003;11(1):12–18.
- 300 reads