For citation:
Kuptsov P. V., Kuznetsov S. P. Synchronization and collective behavior of a coupled map lattice with unidirectional coupling and periodic boundary conditions. Izvestiya VUZ. Applied Nonlinear Dynamics, 2004, vol. 12, iss. 3, pp. 3-22. DOI: 10.18500/0869-6632-2004-12-3-3-22
Synchronization and collective behavior of a coupled map lattice with unidirectional coupling and periodic boundary conditions
Full synchronization is considered for a coupled map lattice with periodic boundary conditions. The lattice composed of the identical maps and the coupling is local and unidirectional, i.e., every map undergoes the action only form its right neighbor. If the lattice consists of the chaotic maps, then there is the limiting lattice length above which synchronization is always unstable for any type of coupling. This limiting value depends on the Liapunov exponent of the partial map. When the partial Liapunov exponent is negative, as for the periodic map, there always exists ап appropriate coupling for which the lattice of any length have stable synchronization. As an example the lattice of logistic maps with the inertial and dissipative coupling is considered. Stability of synchronization is discussed for the different types of individual dynamics of the partial map. Some other typical regimes of dynamics are revealed and discussed.
- Anishchenko VS, Vadivasova ТE. Synchronization of self-oscillations and noise-induced oscillations. Commun. Technol. Electron. 2002;47(2):133–162.
- Pikovsky А, Rosenblum M, Kurths J. Phase synchronization in regular and chaotic systems. International Journal of Bifurcation and Chaos. 2000;10(10):2291–2305. DOI: 10.1142/S0218127400001481.
- Mosekilde Е, Maistrenko Yu, Роstnov D. Chaotic synchronization. Applications to living systems. World Scientific Series on Nonlinear Science. Series А. 2002;42. 440 p. DOI: 10.1142/4845.
- Fujisaka H, Yamada Т. Stability theory of synchronized motion ш coupled oscillating systems. Prog. Theor. Phys. 1983;69:32–46.
- Pikovsky AS. On the interaction оf strange attractors. Z. Phys. В. 1984;55:149–154.
- Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillations in dissipative systems. Radiofizika. 1986;29(9):1050–1060.
- Ресоrа LM, Carrol TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990. Vol. 64, no. 8. P. 821–825. DOI: 10.1103/PhysRevLett.64.821.
- Maistrenko Yu, Kapitaniak Т. Different types оf chaos synchronization in two coupled piecewise linear maps. Phys. Rev. Е. 1996;54:3285–3292.
- Kuptsov PV. Two-parameter analysis of synchronization of chaotic displays. Izvestiya VUZ. Applied Nonlinear Dynamics. 1999;7(6):42–54.
- Alexander JC, Yorke JA, You Z, Кan I. Riddled basins. Tut. 7. Bif. Chaos. 1992;2(04):795-813. DOI:10.1142/S0218127492000446.
- Ott E, Sommerer JC. Blowout bifurcations: the occurrence of riddled basins and on-off intermittency. Phys. Lett. А. 1994;188(1):39–47. DOI: 10.1016/0375-9601(94)90114-7.
- Milnor J. On the concept of attractor. Commun. Math. Phys. 1985;99(2):177-195.
- Heagy JF, Carrol TL, Pecora LM. Desynchronization by periodic orbits. Phys. Rev. Е. 1995;52:R1253. DOI: 10.1103/PhysRevE.52.R1253–R1256.
- Рlаtt N, Spiegel EA, Tresser С. On-off intermittency: A mechanism for bursting. Phys. Rev. Lett. 1993;70(3):279.
- Ashwin Р, Buescu J, Stewart I. Bubbling оf attractors and synchronization оf chaotic oscillators. Phys. Lett. А. 1994;193:126–139.
- Lin WW, Peng CC, Wang CS. Synchronization in coupled map lattices with periodic boundary condition. Int. J. Bif. Chaos. 1999;9:1635–1652.
- Lin WW, Wang YQ. Chaotic synchronization in coupled mар lattices with periodic boundary conditions. SIAM J. Appl. Dyn. Syst. 2002;1(2):175–189. DOI: 10.1137/S1111111101395410.
- Kuznetsov SP. Universality and similarity in the behavior of coupled Feigenbaum systems. Radiophysics and Quantum Electronics. 1985;28(8):991–1007.
- Astakhov SA, Bezruchko BP, Seleznev YeP, Smirnov DA. Evolution of basins of attraction of attractors of coupled systems with period doubling. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(2–3):87.
- 339 reads