For citation:
Dmitriev A. S., Starkov S. O., Shirokov M. E. Synchronization in ensembles of coupled maps. Izvestiya VUZ. Applied Nonlinear Dynamics, 1996, vol. 4, iss. 4, pp. 40-58.
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Article type:
Article
UDC:
621.391+531.01+517.9
Synchronization in ensembles of coupled maps
Autors:
Dmitriev Aleksandr Sergeevich, Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Starkov Sergei Olegovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Shirokov Maksim Evgenievich, Moscow Institute of Physics and Technology
Abstract:
Ensembles of coupled maps are considered. The conditions of synchronization in such ensembles are investigated. It is shown that for this type of coupling these conditions are defined by the value of the first Lyapunov exponent of the partial dynamics in each (isolated) тар and by the spectral characteristics of the coupling matrix. The obtained results are applied to concrete ensembles of coupled maps. Computer simulations of the dynamics of such ensembles with logistic maps and Henon maps as partial systems are described. Some applications of obtained results are outlined.
Key words:
Reference:
- Skarda CA, Freeman WJ. How brains make chaos in order to make sense of the world. Behavioral and Brain Science. 1987;10(2):161-173. DOI: 10.1017/S0140525X00047336.
- Haken H. Information and Self-organization: A Macroscopic Approach to Complex Systems. Berlin: Springer; 1988. 196 p.
- Nikolis J. Dynamics of Hierarchical Systems: An Evolutionary Approach. Berlin: Springer; 1986. 397 p.
- Dmitriev AS. Chaos and information processing in nonlinear dynamic systems. J. Comm. Tech. Electron. 1993;38(1):1-24.
- Fujisaka H, Yamada Т. Stability theory of synchronized motion in coupled- oscillator systems. Progr. Theor. Phys. 1983.;69(1):32-47. DOI: 10.1143/PTP.69.32.
- Afraimovich VS, Verichev NN, Rabinovich МI. Stochastic synchronisation of oscillations in dissipative systems. Radiophys. Quantum Electron. 1985;28(9):1050-1060.
- Pikovsky AS. On the interaction of strange attractors. Z. Phys. B. Condensed Matter. 1984;55:149-154. DOI: 10.1007/BF01420567.
- Pikovskii AS. Interaction of strange attractors. Preprint № 79. Gorky: Institute of Applied Physics AS USSR; 1983. 21 p.
- Astakhov VV, Bezruchko BP, Ponomarenko VI, Seleznev ЕP. Quasi-homogeneous stochastic movements and their destruction in the system of bound nonlinear oscillators. Radiophys. Quantum Electron. 1988;31(5):627-630.
- Ресоrа LM, Carroll TL. Synchronization in chaotic systems. Phys. Rev. Lett. 1990;64(8):821-824. DOI: 10.1103/PhysRevLett.64.821.
- Anishchenko VS, Vadivasova TE, Postnov DE, Safonova МА. Forced and mutual synchronisation of chaos. Sov. J. Comm Tech. Electron. 1991;36(2):338-351.
- Alekseev АА, Shalfeev VD. Stochastic synchronisation in an ensemble of auto-oscillation systems with feedback. Tech. Phys. Lett. 1993;19(21):12-15.
- Kaneko K. Lyapunov analysis and information flow in coupled map lattices. Physica D. 1986;23(1-3):436-447. DOI: 10.1016/0167-2789(86)90149-1.
- Kaneko K. Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency. Physica D. 1989;34(1-2):1-41. DOI: 10.1016/0167-2789(89)90227-3.
- Kaneko K. Spatio-temporal chaos in one- and two-dimensional coupled map lattices. Physica D. 1986;37(1-3):60-82. DOI: 10.1016/0167-2789(89)90117-6.
- Starobinets IM, Gaponov-Grekhov AV, Rabinovich MI. Dynamic model of the spatial development of turbulence. JETP Lett. 1984;39(12):688-691.
- Anishchenko VS, Aranson NS, Postnov DE, Rabinovich MI. Spatial synchronisation and bifurcation of chaos development in a chain of coupled generators. Sov. Phys. Doklady. 1986;286(5.):1120-1124.
- Aranson IS, Afraimovich VS, Rabinovich МI. Stability of the spatially homogeneous state in the mapping chain. Preprint № 203. Gorky: Institute of Applied Physics AS USSR; 1988. 18 p.
- Afraimovich VS, Chow SN. Criteria of spatial chaos in lattice dynamical systems. In: Georgia Institute of Technology CDSNS93-142.
- Dmitriev AS, Shirokov ME. Chaotic signal sychronisers. J. Comm. Tech. Electron. 1995;40(11):1667-1676.
- Blekhman II. Synchronisation of dynamic systems. М.: Nauka; 1971. 894 p.
- Eckmann JP, Ruelle D. Ergodic theory and strange attractors. Rev. Mod. Phys. 1985;57(3):617-656. DOI: 10.1103/RevModPhys.57.617.
- Riesz F, Szkefalvi-Nagy B. Functional Analysis. N.Y.: Courier Corp.; 1990. 504 p.
- Schuster G. Deterministic Chaos: An Introduction. Weinheim: Wiley;1998. 270 p.
- Auerbach Р, Cvitanovic P, Eckmann J-P, Gunarathe GH, Procaccia I. Exploring chaotic motions through periodic orbit. Phys. Rev. Lett. 1987. Vol. 58(23):2387-2389. DOI: 10.1103/PhysRevLett.58.2387.
- Cvitanovic P. Invariant measurements of strange sets in terms of cycles. Phys. Rev. Lett. 1988;61(24):2729-2732. DOI: 10.1103/PhysRevLett.61.2729.
- Artuso R, Aurell E, Cvitanovich P. Recycling of strange sets: I Cycle expansions. Nonlinearity. 1990;3(2):325-338. DOI: 10.1088/0951-7715/3/2/005.
- Artuso R, Aurell E, Cvitanovich P. Recycling of strange sets: II Applications. Nonlinearity. 1990;3:361-386. DOI: 10.1088/0951-7715/3/2/006.
- Dmitriev AS, Starkov SO, Shirokov ME. The structure of periodic orbits of a chaotic auto-oscillation system described by 2nd order difference equations. J. Comm. Tech. Electron. 1994;39(9):1392-1401.
- Dmitriev AS, Shirokov ME. Synchroniser dynamics for chaotic signals with continuous time. J. Comm. Tech. Electron. 1995;40(11):1660.
Received:
08.01.1996
Accepted:
20.06.1996
Published:
10.12.1996
Journal issue:
- 139 reads