For citation:
Koronovskii A. A., Starodubov A. V., Hramov A. E. Technique of definition of transient process duration for dynamic system with discrete time at chaotic oscillation mode. Izvestiya VUZ. Applied Nonlinear Dynamics, 2002, vol. 10, iss. 5, pp. 25-31. DOI: 10.18500/0869-6632-2002-10-5-25-31
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Heading:
Article type:
Article
UDC:
517.9
Technique of definition of transient process duration for dynamic system with discrete time at chaotic oscillation mode
Autors:
Koronovskii Aleksei Aleksandrovich, Saratov State University
Starodubov Andrej Viktorovich, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Abstract:
In present work the technique оf definition оf transition process duration is considered for two-dimensional reference dynamic system with discrete time (The Henon map), аt chaotic oscillation mode.
Key words:
Acknowledgments:
The work was carried out with the support of RFBR (grants 01-02-17392 and 00-15-96673), as well as the Scientific and Educational Center "Nonlinear Dynamics and Biophysics" at Saratov State University (grant REC-006 of U.S. Civilian Research up Development Foundation for the Independent States of the Former Soviet Union).
Reference:
- Koronovskii AA, Trubetskov DI, Khramov AE, Khramova AE. Universal scaling laws of transients. Dokl. Phys. 2002;47(3):181–183. DOI: 10.1134/1.1467857.
- Bezruchko BP, Dikanev TV, Smirnov DA. Role оf transient processes for reconstruction оf model equations from time series. Phys. Rev. Е. 2001;64(3):036210. DOI: 10.1103/PhysRevE.64.036210.
- Henon M. On the numerical computation оf Poincaré maps. Physica D. 1982;5(2–3):412–414. DOI: 10.1016/0167-2789(82)90034-3.
- Kaufmann Z, Lustfeld H. Comparison оf averages оf flows and map. Phys. Rev. E. 2001;64(5):055206. DOI: 10.1103/PhysRevE.64.055206.
- Henon M. A two-dimensional mapping with а strange attractor. Commun. Math. Phys. 1976;50(1):69–77. DOI: 10.1007/BF01608556.
- Henon M. A two-dimensional mapping with a strange attractor. In: Sinay LP, Shilnikova YG, editors. Strange Attractors. Moscow: Mir; 1981. P. 152–163 (in Russian).
Received:
26.06.2002
Accepted:
02.08.2002
Available online:
24.01.2024
Published:
30.12.2002
Journal issue:
- 320 reads