ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Balanov A. G., Koronovskii A. A., Selskii A. O., Hramov A. E. Temperature effect on drift velocity of electrons in superlattice in electric and tilted magnetic fields. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 3, pp. 128-139. DOI: 10.18500/0869-6632-2010-18-3-128-139

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 157)
Language: 
Russian
Article type: 
Article
UDC: 
530.182:621.385.6

Temperature effect on drift velocity of electrons in superlattice in electric and tilted magnetic fields

Autors: 
Balanov Aleksandr Gennadevich, Loughborough University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Selskii Anton Olegovich, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University
Abstract: 

The work studies the effects of temperature on drift velocity of the electrons in semiconductor superlattices in electric and tilted magnetic fields. It is shown that a thermal distribution of the electrons can counter-intuitively enhance the phenomena related to resonances between the Bloch and the cyclotron frequencies of electron motion in superlattices. In particular, the increase of temperature leads to more prominent resonant maxima in the dependence of drift velocity of electrons on the strength of an electric field. This effect can be explained by peculiarities of nonlinear dynamics of electrons in the vicinities of Bloch-cyclotron resonances. 

Reference: 
  1. Esaki L, Tsu R. Superlattices and negative differential conductivity in semi-conductors. IBM J. Res. Develop. 1970;14(1):61–65. DOI: 10.1147/rd.141.0061.
  2. Shik AY. R Superlattices–periodic semiconductor structures. Sov. Phys. Semicond. 1974;8:1841–1864 (in Russian).
  3. Tsu R. Superlattices to nanoelectronics. Elsevier; 2005.
  4. Wacker A. Semiconductor superlattices: A model system for nonlinear transport. Phys. Rep. 2002;357:1–111. DOI: 10.1016/S0370-1573(01)00029-1.
  5. Bonilla LL, Grahn HT. Non-linear dynamics of semiconductor superlattices. Rep. Prog. Phys. 2005;68(3):577–683. DOI: 10.1088/0034-4885/68/3/R03.
  6. Fromhold TM, Patane A, Bujkiewicz S, Wilkinson PB, Fowler D, Sherwood D, Stapleton SP, Krokhin AA, Eaves L, Henini M, Sankeshwar NS, Sheard FW. Chaotic electron diffusion through stochastic webs enhances current flow in superlattices. Nature London. 2004;428:726–730. DOI: 10.1038/nature02445.
  7. Balanov AG, Fowler D, Patane A, Eaves L, Fromhold TM. Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field. Phys. Rev. E. 2008;77(2):026209. DOI: 10.1103/PhysRevE.77.026209.
  8. Ignatov AA, Shashkin VI. Bloch oscillation of electrons and instabilities of space-charge waves in semiconductor superlattices. Sov. Phys. JETP. 1987;66:526–530.
  9. Fromhold TM, Krokhin AA, Tench CR, Bujkiewicz S, Wilkinson PB, Sheard FW, Eaves L. Effects of stochastic webs on chaos electron transport in semiconductor superlattices. Phys. Rev. Lett. 2001;87(4):046803. DOI: 10.1103/PhysRevLett.87.046803.
  10. Zaslavsky GM, Sagdeev RZ, Usikov DA, Chernikov AA. Weak Chaos and Quasi-Regular Patterns. Cambridge: Cambridge University Press; 1991.
  11. Sagdeev RZ, Usikov DA, Zaslavsky GM. Nonlinear Physics. NY: Harwood Academic Publishers; 1988.
  12. Fowler D, Hardwick DPA, Patane A, Greenaway MT, Balanov AG, Fromhold TM, Eaves L, Henini M, Kozlova N, Freudenberger J, Mori N. Magnetic-field-induced miniband conduction in semiconductor superlattices. Phys. Rev. B. 2007;76:245303. DOI: 10.1103/PhysRevB.76.245303.
  13. Greenaway MT, Balanov AG, Scholl E, Fromhold TM. Controlling and enhancing terahertz collective electron dynamics in superlattices by chaos-assisted miniband transport. Phys. Rev. B. 2009;80:205318. DOI: 10.1103/PhysRevB.80.205318.
  14. Hyart T, Mattas J, Alekseev KN. Model of the influence of an external magnetic field on the gain of terahertz radiation from semiconductor superlattices. Phys. Rev. Lett. 2009;103(11):117401. DOI: 10.1103/PhysRevLett.103.117401.
  15. Bass FG, Zorchenko VV, Shashora VI. Stark-cyclotron resonance in semiconductors with a superlattice. JETP Letters. 1980;31(6):345–347.
  16. Bass FG, Zorchenko VV, Shashora VI. To the theory of galvanomagnetic and high-frequency phenomena in semiconductors with a superlattice. Sov. Phys. Semicond. 1981;15:263–270.
  17. Press WH, Teukolsky SA, Vetterling WT, Flannery BT. Numerical recipes in Fortran: The art of scientific computing. Cambridge University Press; 1986.
Received: 
12.11.2009
Accepted: 
18.02.2010
Published: 
30.06.2010
Short text (in English):
(downloads: 88)