ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Erjomka V. D. Terahertz vacuum electromagnetic radiation sources: evolution zigzag from klynotron to klynoorbictron. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 1, pp. 7-34. DOI: 10.18500/0869-6632-2013-21-1-7-34

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 183)
Language: 
Russian
Article type: 
Review
UDC: 
621.385.032

Terahertz vacuum electromagnetic radiation sources: evolution zigzag from klynotron to klynoorbictron

Autors: 
Erjomka Viktor Danilovich, A.Ya. Usikov Institute for Radiophysics and Electronics National Academy of Sciences of Ukraine
Abstract: 

Investigation and development of efficient electromagnetic oscillations sources are one of the topical issues in the field of terahertz radiophysics and electronics. A frequency region is regarded as an explored for which oscillating, amplifying and measurement devices have not been developed. The exploration of the terahertz frequency range is at the initial state. In a review paper, published in one of the USA scientific journal [1], which was devoted to the terahertz radiation vacuum sources there is some reminder of using, a «klynotron effect» in the BWO developed at the IRE NASU. The aim of the present paper is to give a short description of the contribution to exploring the terahertz frequency range which was made by researchers and developers of oscillatory and measurement devices. These facilities were proposed and engineered at A. Usikov IRE NASU over the period 1956–2011. This paper also contains the feeling appreciation and gratitude to the Department of electronics of N.G. Chernyshevskiy Saratov state university on the occasion of its 60-th anniversary. The university graduates made a tangible contribution to the development a microwave electronics as well as to the study into the «klynotron effect». We have obtained the results from the investigation of the coherent terahertz region vacuum sources with nonrelativistic-tilted-to the surface of the periodic structure by an electron flow. This work was done using the techniques of physical and mathematical experiment. Evolutionary development was traced from the O-type BWO-klynotron to klynoorbictron. We have demonstrated the promising exploration of the terahertz radiation vacuum sources with smooth tuning of an output signal frequencies in which the «klynotron effect» is utilized. The information we have provided extends the knowledge about potential capabilities of terahertz electromagnetic radiation vacuum sources with an tilted sheet electron flow. The author’s historical comments are not devoid of shortcoming some because they reflect his knowledges and prejudices.

Reference: 
  1. Booske JH, Dobbs RJ, Joye CD, Kory CL, Neil GR, Park G-S, Park J, Temkin RJ. Vacuum electromagnetic high-power terahertz sources. IEE Trans. on Terahertz Science and Technology. 2011;1(1):54–75. DOI: 10.1109/TTHZ.2011.2151610
  2. Kalinin VI. Generation of decimeter and centimeter waves (microradiowaves). Moscow: Svyaz; 1948. 279 p. (In Russian).
  3. Kalinin VI, Gerstein GM. Introduction to radiophysics. Moscow: Sovetskoe radio; 1959. 660p. (In Russian).
  4. Shevchik V.N. Basics of microwave electronics. Moscow: Sovetskoe radio; 1959. 307 p. (In Russian).
  5. Shevchik VN, Swedes GN, Soboleva AV. Wave and oscillatory phenomena in electronic flows at ultra-high frequencies. Saratov: Saratov University Publishing; 1962. 336 p. (In Russian).
  6. Shevchik HV. Interaction of electron beams with electromagnetic waves. Saratov: Saratov University Publishing; 1963. (In Russian).
  7. Shevchik VN, Trubetskov DI. Analytical methods of calculation in microwave electronics. Moscow: Sovetskoe radio; 1970. 584 p. (In Russian).
  8. Microwave electronic devices. Ed. HV. Shevchika and AI. Grigorieva. Saratov: Saratov University Publishing; 1980. 416 p. (In Russian).
  9. Rabinovich MI, Trubetskov DI. Introduction to the theory of oscillations and waves. Мoscow - Izhevsk: RCD; 2000. 560 p. (In Russian).
  10. Trubetskov DI, Hramov AE. Lectures on ultra-high frequency electronics for physicists. V. 2. Moscow: Fizmatlit; 2004. 648 p. (In Russian).
  11. Trubetskov DI, Hramov AE. Lectures on ultra-high frequency electronics for physicists. V. 1. Moscow: Fizmatlit; 2003. 496 p. (In Russian).
  12. Methods of nonlinear dynamics and chaos theory in ultra-high frequency electronics problems. Vol. 1. Stationary processes/Ed. AA. Kuraeva and DI. Trubetskova. Moscow: Fizmatlit, 2009. 288 p. (In Russian).
  13. Methods of nonlinear dynamics and chaos theory in ultra-high frequency electronics problems. Vol. 2. Stationary processes/Ed. AA. Koronovsky, DI. Trubetskova, AE. Hramova. Moscow: Fizmatlit, 2009. 392 p. (In Russian).
  14. Kuraev AA. Ultra-high frequency devices with periodic electronic flows. Minsk: Nauka I tehnika; 1971. 310 p. (In Russian).
  15. Kuraev AA, Kovalev IS, Kolosov SV. Numerical optimization methods in microwave electronics problems. Minsk: Nauka I tehnika; 1975. 295 p. (In Russian).
  16. Кураев АА. Теория и оптимизация электронных приборов СВЧ. Minsk: Nauka I tehnika; 1979. 334 p. (In Russian).
  17. Kuraev AA. Powerful microwave devices: Methods of analysis and optimization of parameters. Moscow: Radio I svyaz; 1986. 208 p. (In Russian).
  18. Kuraev AA, Bayburin VB, Ilyin EM. Mathematical modeling and methods of optimal design of microwave instruments. Minsk: Nauka I tehnika; 1990. 391 p. (In Russian).
  19. Kuraev AA, Popkova TD, Sinitsyn AK. Electrodynamics and radio wave propagation. Minsk: Bestprint; 2004. 357 p. (In Russian).
  20. Koch М. Terahertz technology: Quo vadis? Photonik international. 2006:14–17.
  21. Millimeter and submillimeter waves. Ed. WG. Mirimanova. Moscow: Foreign Languages Publishing House, 1959. 607 p. (In Russian).
  22. Manley JM, Rowe HF. General energy relations in nonlinear reactances. Proc. IRE. 1959;47(12):2115–2116.
  23. Barnet LR, Baird JN, Grow RW, Holmes SG. Submillimeter-wave BWO’s. IEEE Int. Electron Devices Meeting. San Francisco: CA. Technical Digest; 1985. 364 p.
  24. Woolard D, Kaul R, Sueniam R, Walker AH, Globus T, Samuela A. Terahertz electronics for chemical and biological warfare agent detection. IEEE MTT-S Dig. 1999;3:925–928. 10.1109/MWSYM.1999.779537
  25. Piesiewicz R. et al. THz channel characterization, for future wireless gigabit indoor communication systems. In Terahertz and Gigahertz Electronics and Photonics IV. Proceedings of SPIE. 2005;5727:166–176. DOI:10.1117/12.588555
  26. Kompfner R. The invention on traveling-wave tube. San Francisco: San Francisco Press; 1964. 30 p.
  27. Stelmach MF. Microwave range generator. Copyright Certificate of the USSR No. 172364 from 31.05.1948. Bulletin of inventions and discoveries. 1965:13.
  28. Altshuler YuG, Tatarenko AS. Low-power reverse wave lamps. Moscow: Sovetskoe radio; 1963. 296 p. (In Russian).
  29. Inverse wave lamp electronics. Ed. HV. Shevchika and DI. Trubetskova. Saratov: Saratov University Publishing; 1975. 194 p. (In Russian).
  30. Trubetskoy DI. Introduction to microwave electronics. History and initial information. Lectures on microwave electronics and radiophysics. Saratov: Saratov University Publishing; 1986. 119 p. (In Russian).
  31. Stelmach MF. To the theory of a dual block of slot resonators. Radiotehnika. 1953;8:30.
  32. Stelmach M.F. On the interaction of an electronic stream with a field of spatial harmonics. Radio Engineering and Electronics 1957;2(4):461–468.
  33. Taranenko ZI, Trokhimenko YaK. Slowing down structures. Kiev: Tehnika; 1965. 307 p. (In Russian).
  34. Silin of RA, Sazonov AL. Slowing-down systems. Moscow: Sovetskoe radio; 1966. 632 p. (In Russian).
  35. Guenard P, Doehler О, Epsztein В, Warnecke R. Nouveau tubes oscillateurs a large bande d’accord onique pour hyperfrequences. C.R. Acad. Sc. 1952;235:236.
  36. Gershenzon EM, Golant MB, Negirev AA, Savelyev SUN. Millimeter and submillimeter reverse wave lamps. Ed. ND. Devyatkova.Moscow: Radio I svyaz; 1985. 136 p.
  37. Ives L, Kory С, Read М. et al. Development of terahertz backward wave oscillators. International Vacuum Electronics Conference (IVEC’2004). Conf. Dig. Monterey, CA, USA (27–29 April 2004); 2004. 67–68 p. DOI:10.1109/IVELEC.2004.1316201
  38. Dayton JAJr, Mearini GT, Kory CL. Diamond based submillimeter backward wave oscillator. International Vacuum Electronics Conference Digest. 2004:71–72. DOI: 10.1109/IVELEC.2004.1316203.
  39. Barnet LR, Stankiewicz N, Dayton JAJr. Submillimeter Backward-Wave Oscillator. IEEE Int. Electron Devices Meeting, San Francisco, CA, TechnicalDigest.; 2004:341–342.
  40. Usikov AYa. Development of methods for creation of wide-band measuring generators of millimeter wave range. Report about RW «Boksit». Kharkov: IRE NAS of Ukraine Publ.; 1957. 168 p. (In Russian).
  41. Мillman S. A spatial harmonic travelling-wave amplifier for six millimeters wavelength. Proc. of the IRE. 1951;39(9):1035–1043. DOI:10.1109/JRPROC.1951.273744
  42. Kompfner R. Backward-wave oscillator. Bell Lab. Rec. 1953;31(8):281–285.
  43. Kompfner R, Williams NT. Backward-wave tubes. Proc. of the IRE. 1953;41(11):1602–1611. DOI: 10.1109/JRPROC.1953.274186
  44. Walker LR. Starting current in the backward-wave oscillator. J. Appl. Phys. 1953; 24(7):854–859.
  45. Levin GYa. Backwave lamp. Copyright Certificate of the USSR No. 341113 from 17.12.1956. Discoveries, inventions. 1972;25:201.
  46. Electronics and radiophysics of millimeter and submillimeter radio waves. Ed. Usikova AYa. Kiev: Naukova Dumka; 1986. 365 p. (In Russian).
  47. Levin GYa, Borodkin AI, Kirichenko AYa. at al. Klinotron. Ed. Usikov AYa. Kiev: Naukova Dumka; 1992. 200 p. (In Russian).
  48. Efimov BP, Kirichenko AYA, Buzhinsky AP. Experimental study of the effect of reflections on the frequency characteristics of LOV of the millimeter range. Works IRE AS USSR Kharkiv. 1967;15:141–157.
  49. Yeryomka VD, Belukha ОYa, Kirichenko LO. Low-resonance mm and submmwave BWO-klynotron. Proc. 13-th Int. Crimean conference «Microwave Telecommunication Technology» (CriMiCo’2003). Ukraine: Weber. 2003;1:255–256.
  50. Kirichenko AYA, Efimov BP. To the issue of the operation of O-type LOV with non-desiccated electron flux in a non-uniform magnetic field. Works IRE AS USSR Kharkiv. 1967;15:130.
  51. Lysenko EE, Pishko OF, Chumak VT, Churipova SA. State of development of continuous clinotrons. Telecommunications and Radio Engineering. 2004;8:3.
  52. Kirichenko AYa, Churipova SA. Clinotron. Proceedings "Radiophysics and Electronics". Kharkov: IRE NAS of Ukraine Publ. 2004;61(9):68–74.
  53. Milcho MV, Yefimov BP, Zavertanniy VV, Goncharov VV. Peculiar features of klynotron-type oscillator performances. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 2005;10(3):435–440. (in Russian).
  54. YeryomkaVD, Kirichenko AYa, Solodovnik VA. The backwave lamp is a clinotron. Copyright certificate. USSR №555751 from 17.12.1956. Discoveries, inventions. 1978;44:227.
  55. Yeryomka VD, Kirichenko AYa, Solodovnik VA. About excitation of oblique comb by electronic flow. Radiophysics and Quantum Electronics. 1977;20(10):1580.
  56. Kirichenko Aya. THE ORTOCLINOTRON EFFECT. Proceedings "Radiophysics and Electronics". 2007;12(special issue):117–121.
  57. Pobedonoscev AS, Tager AS. Analysis of the interaction of the electron flow with the electromagnetic wave in the approximation of the "given field." Electronika. 1958;5:117.
  58. Kontorovich VM, Maleev VYa. About stability of inclined bundle with impedance plane. Proceedings "Radiophysics and Electronics". АН Ukrainian SSR. 1961;9:217.
  59. Kontorovich VM. About waves in an inclined beam filling the half-space above the deceleration system. Proceedings "Radiophysics and Electronics". Ukrainian SSR. 1962;10:143.
  60. Andrushkevich BC, Kozlov GA, Trubetskov DI. To the two-dimensional linear theory of microwave instruments of the O-type. Radiophysics and Quantum Electronics. 1967;10(1):105.
  61. Kontorovich VM, Maleev VYa. The inclined electron jet (cathode ray) and surface wave interaction (clinotron theory). Proceedings "Radiophysics and Electronics". 2007;12(special issue): 22–34.
  62. Vavriv DM. Theory of the clinotron. Proceedings "Radiophysics and Electronics". 2007;12(special issue): 35–47.
  63. Andrushkevich VS, Gamayunov YuG, Patrusheva EV. A nonlinear clinotron theory. Journal of Communications Technology and Electronics. 2010;55(3):330–336. DOI: 10.1134/S1064226910030125.
  64. Mil’cho MV. The Interaction of Electrons with Transversal and Longitudinal Components of the High-Frequency Field in a Clinotron-Type Oscillator. Proceedings "Radiophysics and Electronics". 2007;12(special issue): 59–70.
  65. Yeryomka VD, Pospelov LA, Kirichenko AYa. Multiplier clinotron of millimeter and submillimeter wave ranges. Copyright certificate 50354. USSR. M of C. H01J 25/10. Discoveries, inventions. 1970;4.
  66. Yeryomka VD, Pospelov LA, Kirichenko AYa. Multiplier clinoorotron of millimeter and submillimeter wave ranges. Copyright certificate 59810. USSR M.P.C. H01J 25/10. Discoveries. Inventions. 1971;46.
  67. Yeryomka VD. Inclined-electron flow frequency multiplier. Proceedings "Radiophysics and Electronics". 2007;12(special issue):81–103.
  68. Yeryomka VD. Frequency multipliers with inclined electron flow. Proc. 17-th Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’ 2007). Ukraine: Weber. 2007;1:151–152. DOI:10.1109/CRMICO.2007.4368666
  69. Rusin FS, Bogomolov GD. Electronic device for generation and amplification of oscillations of millimeter and submillimeter wave ranges. Copyright certificate of the USSR No195557 from 16.02.1965. Discoveries, inventions. 1967;10.
  70. Smith SJ, Purcell EM. Visible light from localized surface charges moving acrоss a gratting. Phys. Rev. 1953;92(4):1069–1069. DOI: 10.1103/PhysRev.92.1069
  71. Rusin FS, Bogomolov GD. The orotron, an electronic device with an open resonator and a reflecting grating. Radiophysics and Quantum Electronics. 1968;11(5):430-433. DOI: 10.1007/BF01034372.
  72. Bogomolov GD, Borodkin AI, Kushch BC. and others. About comb excitation in open resonator in orotron mode and LOV mode. Electronic Engineering. Series 1. Microwave Engineering. 1970;1:97.
  73. Balaklitsky IM, Kurin VG, Skrynnik BC, Tretyakov OA, Shestopalov VP. Diffraction radiation generator. Copyright Certificate of the USSR No. 334605 dated 03.04.1970. Discoveries, inventions. 1972;12.
  74. Balaklitsky IM, Skrynnik BC, Tretyakov OA, Shestopalov VP. Generator of diffraction radiation of millimeter and submillimeter ranges. Ukrainian Journal of Physics. 1969;14(4):539–552.
  75. Balaklitsky IM, Kurin VT, Skrynnik BC. About GDI operation in LOV mode. Ukrainian Journal of Physics. 1970;15(5):717–724.
  76. Shestopalov VP. Diffraction electronics. Kharkov: Vyshaya shkola; 1976. 231 p.
  77. Korneenkov VK, Miroshnichenko VS, Skrynnik BK. Diffraction radiation oscillators for CW and pulsed operation. Proceedings "Radiophysics and Electronics". 1998;3(1):67–70.
  78. Wortman DE, Leavitt RP. The Orotron. In Infrared and millimeter waves. New York: Academic Press; 1983. 322 p.
  79. Mizuno K, Ono S, Shibata Y. Two different mode interaction in an electron tube with a Fabry–Perot resonator – the ledatron. IEEE Trans. Electron Devices. 1973;20(8):749–752. DOI: 10.1109/T-ED.1973.17737
  80. Mizuno K, Ono S. The Ledatron. In Infrared and millimeter waves. New York: Academic Press; 1979. 213 p.
  81. Weinstein LA, Isaev VA, Trubetskoy DI. Electronic generator with open resonator. Radio Engineering and Electronic Physics. 1983;28(7):1233–1248.
  82. Zeitlin MB, Myasin EA. Orotron. Analysis of effective modes. Journal of Communications Technology and Electronics. 1993;38(6):961–981.
  83. Moroz EE, Soroka AS, Tretyakov OA, Shmatko AA. Dual lattice resonator as self-oscillating system. Radio Engineering and Electronic Physics. 1980;25(11):2301.
  84. Yeryomka VD, Korneenkov VK, Concealer BK, Shestopalov VP. Diffraction radiation generator. Copyright Certificate of the USSR №669963 from 15.12.1976. 1979;9:47.
  85. Yeryomka VD, Kravchenko VF, Kuraev AA, Pustovoit BC, Sinitsyn AK. Atomic function in the proble of optimization efficiency of double-beam orotron with. Telecommunications and Radio Engineering. 2000;3:58–62.
  86. Gulyaev UV, Kuraev AA, Nefedov EI. at al. To the problem of optimizing the coaxial orotron. Dokl. Akad. Nauk SSSR. 1981;257(2):349–352.
  87. Yeryomka VD, Kurayev AA, Sinitsyn AK. Phase velocity optimization millimeterwavelength orotron with tilted electron beam. Telecommunications and Radio Engineering. 2008;67(9):783–793. DOI:10.1615/TelecomRadEng.v67.i9.20
  88. Yeryomka VD, Kurayev AA, Sinitsyn AK. Coaxial orotron. Patent of Ukraine No. 89882 from 10.03.2010. Biluten’. 2010;6.
  89. Kuraev AA, Sinitsyn AK. Study of autophase mode in relativistic orotron. Soviet Journal of Communications Technology and Electronics. 1987;32(11):2427–2431.
  90. Kravchenko VF, Rwachev VA, Rwachev VL. Mathematical methods of signal processing based on atomic functions. Journal of Communications Technology and Electronics. 1995;40(9):1385–1406.
  91. Batura MP, Kuraev AA, Sinitsyn AK. Fundamentals of theory and optimization of modern electronic microwave devices. Minsk: BSUIR; 2007. 245 p.
  92. Yeryomka VD, Miroshnichenko VS, Demchenko YuM. Orbictron is a diffraction radiation generator. Patent of Ukraine No. 72435 from 09.11.2011. Biluten’. 2012;16.
  93. Demchenko MYu, Korneenkov VK, Miroshnichenko VS, Poyedinchuk AE, Svischov YuV, Tuchkin YuA. An open resonator with rectangular groove on the reflector, theory andexperiment. Proceedings "Radiophysics and Electronics". 2000;5(3):19–28.
  94. Yeryomka VD, Gurevich AV, Kurayev АА, Sinitsyn АК. Klinoorbictron – Terahertz Range Oscillator. 12-th Int. Vacuum Electronics Conference (IVEC’2011). February 21–24, 2011, Bangalore, India. Conf Dig. p. 253. DOI: 10.1109/IVEC.2011.5746971
  95. Gurevich AV, Eremka VD, Kravchenko VF, Kuraev AA, Sinitsyn AK. Two-stage orbotron the amplifier and the frequency multiplier. Telecommunications and Radio Engineering. 2007;10:64–69.
  96. Bezborodov V. I., Kiseliov V. K., Kuleshov Ye. M., Yanovsky M. S. Wave ranges on the base of metal-dielectric waveguide of square cross-section. Proceedings "Radiophysics and Electronics". 2007;12(3):589–594.
Received: 
04.12.2012
Accepted: 
04.12.2012
Published: 
31.05.2013
Short text (in English):
(downloads: 62)