For citation:
Neiman A. B. The cumulant approach for the investigation of bifurcations of dynamical systems driven by the external noise. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 3, pp. 8-21.
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language:
Russian
Heading:
Article type:
Article
UDC:
621.373
The cumulant approach for the investigation of bifurcations of dynamical systems driven by the external noise
Autors:
Neiman Aleksander Borisovich, Ohio University
Abstract:
The problems of bifurcation analysis of noisy systems are considered. The technique of bifurcation analysis based on the cumulant expansion is proposed. The noise influence оn the mode-lockirg bifurcations in the circle map and оn the period-doubling bifurcations in the Feigenbaum map is considered as examples.
Key words:
Acknowledgments:
The author expresses sincere gratitude to Yu.L. Klimontovich and V.S. Anishchenko for support of the work and valuable comments. The author is grateful to J. Kurths, U. Feudel, W. Ebeling, A. S. Pikovsky and L. Schimansky-Geier for discussing the results of the work.
The work was partially supported by funds from the International Science Foundation (grant NRO 000) and the State Committee for Higher Education of Russia (grant 93-8.2-10).
Reference:
- Pontryagin LS, Andronov АA, Vitt АA. On the statistical consideration of dynamic systems. J. Exp. Theor. Phys. 1933;3(3):165-180. (in Russian).
- Moss F, McClintock PVE, editors. Noise in Nonlinear Dynamical Systems. Vol. 3. Cambridge: Cambridge University Press; 1989. 294 p.
- Stratonovich RL. Selected Questions of the Theory of Fluctuations in Radio Engineering. M.: Sovetskoe Radio; 1961. 558 p. Stratonovich RL. Nonlinear Non-Equilibrium Thermodynamics. М.: Nauka; 1985. 479 p.
- Klimontovich YuL. Statistical Physics. М.: Nauka; 1982. 608 p. Klimontovich YuL. Turbulent Movement and Chaos Structure. М.: Nauka; 1990. 316 p. Klimontovich YuL. Nonlinear Brownian motion. Phys. Usp. 1994;37(8):737-766. DOI: 10.1070/pu1994v037n08abeh000038.
- Rytov SM. Introduction to Statistical Radiophysics. Random Processes. М.: Nauka; 1976. 496 p.
- Malakhov AN. Fluctuations in Auto-Oscillatory Systems. М.: Nauka; 1968. 660 p.
- Klyatskin VI. Statistical Description of Dynamic Systems with Fluctuating Parameters. М.: Nauka; 1975. 239 p.
- Shilnikov LP. Strange attractors and dynamical models. In: Madan RN, editor. Chua’s Circuit: A Paradigm for Chaos. Singapore: World Scientific; 1993. P. 3-12. DOI: 10.1142/9789812798855_0001.
- Gonchenko SV, Turaev DV, Shilnikov LP. On models with nonrough Poincare homoclinic curves. Doklady Math. 1992;44(2):422-426.
- Risken H. The Fokker - Planck Equations. In: Methods of Solution and Applications. Berlin: Springer; 1989. 472 p.
- Tikhonov VI, Mironov МА. Markov Processes. М.: Sovetskoe Radio; 1977. 488 p.
- Klimontovich YuL. Ito, Stratonovich and kinetic forms of stochastic equations. Physica А: Stat. Mech. Appl. 1990;163(2):515-532. DOI: 10.1016/0378-4371(90)90142-F. Klimontovich YuL, Alternative description of stochastic processes in nonlinear systems. «Kinetic form» of master and Fokker - Planck equations. Physica А. 1992;182(1-2):121-132. DOI: 10.1016/0378-4371(92)90233-G.
- Haken H. Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices. Berlin: Springer; 1983. 356 p. DOI: 10.1007/978-3-642-45553-7.
- Van Kampen NG. Langevin-like equation with colored noise. J. Stat. Phys. 1989;54(5-6):1289-1308. DOI: 10.1007/BF01044716. Hanggi P. Colored noise in continuous dynamical systems: а functional calculus approach. In: Moss F, McClintock PVE, editors. Noise in Nonlinear Dynamicai Systems. Vol.l. Cambridge: Cambridge University Press; 1989. P. 384.
- Mackey M, Longtin А, Lasota А. Noise-induced global asymptotic stability. J. Stat. Phys. 1990;60(5-6):735-751. DOI: 10.1007/BF01025992.
- Ebeling W. Structural stability of stochastic systems. In: Haken H, editor. Chaos and Order in Nature. Berlin: Springer; 1981. P. 188.
- Meunier C, Verga AD. Noise and bifurcations. J. Stat. Phys. 1988;50(1-2):345-375. DOI: 10.1007/BF01022998.
- Horsthemke W, Lefever R. Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Berlin: Springer; 1984. 322 p. DOI: 10.1007/3-540-36852-3.
- Graham R. Bifurcations under weak noise. J. Stat. Phys. 1989;54(5-6):1207-1215. DOI: 10.1007/BF01044712. Graham R. Macroscopic potentials, bifurcations and noise in dissipative systems. In: Moss F, McClintock PVE, editors. Noise in Nonlinear Dynamical Systems. Vol.1. Cambridge: Cambridge University Press; 1989. P. 384.
- Wiesenfeld K. Noisy precursors of nonlinear instabilities. J. Stat. Phys. 1985;38(5-6):1071-1097. DOI: 10.1007/BF01010430.
- Pikovskii AS. Influence of noise on the statistics of random self-oscillations. Radiophys. Quantum Electron. 1986;29(5):389-393. DOI: 10.1007/BF01035130.
- Klosek-Dygas MM, Matkovsky BJ, Schuss Z. A first passage time approach to stochastic stability of nonlinear oscillators. Phys. Lett. A. 1988;130(1):11-18. DOI: 10.1016/0375-9601(88)90402-1.
- Anishchenko VS, Neiman AB. Structure and properties of chaos in presence of noise. In: Sagdeev RZ, editor. Nonlinear Dynamics of Structures. Singapore: World Scientific; 1991. P. 21.
- Stratonovich RL, Landa PS. The effect of noise on the generator with rigid excitation. Radiophys. Quantum Electron. 1959;2(1):37-44. (in Russian).
- Khibnik А, Kuznetsov YuA, Levitin V, Nikolaev EV. Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Physica D. 1993;62(1-4):360-371. DOI: 10.1016/0167-2789(93)90294-B.
- Bunke U, Ebeling W. Large-noise expansions for the stationary solution of Fokker - Planck equation. Annalen der Physik. 1990;47(2/3):101-105.
- Venttsel АD, Freidlin МI. Fluctuations in Dynamic Systems under the Influence of Small Random Disturbances. М.: Nauka; 1979. 424 p.
- Kifer YuI. О малых случайных возмущениях некоторых гладких динамических систем. Math. USSR Izvestiya. 1974;8(5):1083-1107. DOI: 10.1070/IM1974v008n05ABEH002139. Kifer Yu. Atiractors via random perturbations. Commun. Math. Phys. 1989;121:445-455. DOI: 10.1007/BF01217733.
- Sinai YaG. Stochasticity of dynamic systems. In: Gaponov-Grekhov AV, editor. Nonlinear Waves. M.: Nauka; 1979. P.192.
- Blank ML. Ergodic properties of dynamic systems with stochastic attractors. In: Interacting Markov Processes and Their Application in Biology. Pushchino: Pushchino Scientific Center for Biological Research AS USSR; 1986. P. 34.
- Graham R, Наmm А, Tel Т. Nonequilibrium potentials for dynamical systems with fractal attractors or repellers. Phys. Rev. Lett. 1991;66(24):3089-3092. DOI: 10.1103/PhysRevLett.66.3089.
- Наmm А, Graham R. Quasipotentials for simple noisy maps with complicated dynamics. J. Stat. Phys 1992;66:689-725. DOI: 10.1007/BF01055697.
- Hamm A, Graham R. Scaling for small random perturbations of golden critical circle map. Phys. Rev. E. 1992;46(10):6323-6333. DOI: 10.1103/physreva.46.6323.
- Desai RC, Zwanzig R. Statistical mechanics of а nonlinear stochastic model. J. Stat. Phys. 1978;19(1):1-24. DOI: 10.1007/BF01020331.
- Malakhov АN. Cumulant Analysis of Random Non-Gaussian Processes and Their Transformations. M.: Sovetskoe Radio; 1978. 376 p.
- Tatarnikova GV, Shalfeev BD. Study of statistical dynamics of phase synchronisation systems. Radio engineering. 1986;73(3):40.
- Just W, Sauermann H. Ordinary differential equations for nonlinear stochastic oscillators. Phys. Lett. A. 1988;131(4/5):234-238. DOI: 10.1016/0375-9601(88)90018-7.
- Anishchenko VS, Neiman AB. Bifurcational analysis of bistable system excited by colored noise. Int. J. Bif. Chaos. 1992;2(4):979-982. DOI: 10.1142/S0218127492000574.
- Neiman A, Schimansky-Geier L. Stochastic resonance in bistable systems driven by harmonic noise. Phys. Rev. Lett. 1994;72(19):2988-2991. DOI: 10.1103/PhysRevLett.72.2988.
- Neiman A, Anishchenko V, Kurths J. Period-doubling bifurcations in the presence of colored noise. Phys. Rev. E. 1994;49(5):3801-3806. DOI: 10.1103/physreve.49.3801.
- Neiman A, Feudel U, Kurths J. The cumulant approach for investigating the noise influence on mode-locking bifurcations. J. Phys. A: Math. Gen. 1995;28(9):2471-2480. DOI: 10.1088/0305-4470/28/9/010.
- Schuster G. Deterministic Chaos: An Introduction. Weinheim: Wiley;1998. 270 p.
- Anishchenko VS. Complex Oscillations in Simple Systems. М.: Nauka; 1990. 312 p. (in Russian).
- Feigenbaum MJ, Kadanoff LP, Shenker SJ. Quasiperiodicity in dissipative systems: а renormalization group analysis. Physica D. 1982;5(2-3):370-386. DOI: 10.1016/0167-2789(82)90030-6. Rand D, Ostlund S, Sethna J, Siggia ED. Universal properties of the transition from quasi-periodicity to chaos in dissipative systems. Physica D. 1983;8(3):303-342. DOI: 10.1016/0167-2789(83)90229-4.
- Feigenbaum MJ, Hasslacher В. Irrational decimations and path integrals for external noise. Phys. Rev. Lett. 1982;49(9):605-609. DOI: 10.1103/PhysRevLett.49.605.
- Cvitanovic P. Universality in Chaos. N.Y.: Adam Hilger; 1989. 631 p. Vul ЕB, Sinai YaG, Khanin KM. Feigenbaum universality and the thermodynamic formalism. Rus. Math. Surveys. 1984;39(3):1-40. DOI: 10.1070/RM1984v039n03ABEH003162.
Received:
10.01.1995
Accepted:
15.03.1995
Published:
05.04.1996
Journal issue:
- 105 reads