ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Zavolsky N. A., Zapevalov V. E., Moiseev M. A., Sedov A. S. The investigation of subterahertz gyrotron for dnp spectroscopy in the IAP RAS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 3, pp. 70-80. DOI: 10.18500/0869-6632-2012-20-3-70-80

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 205)
Language: 
Russian
Article type: 
Article
UDC: 
621.385.69.01

The investigation of subterahertz gyrotron for dnp spectroscopy in the IAP RAS

Autors: 
Zavolsky Nikolaj Aleksandrovich, Samara State University
Zapevalov Vladimir Evgenevich, Institute of Applied Physics of the Russian Academy of Sciences
Moiseev Mark Andreevich, Institute of Applied Physics of the Russian Academy of Sciences
Sedov Anton Sergeevich, Institute of Applied Physics of the Russian Academy of Sciences
Abstract: 

The paper presents the results of research is carried out in the Institute of Applied Physics and is aimed at creating a CW submillimeter gyrotrons with an output power of several tens of watts. Results of experiments on the 258 GHz gyrotron at the second harmonic of the gyrofrequency are presented. In the course of experiments maximum output power of 200 W and the relative stability of the output frequency at 5 · 10−6 for the hours-long continuous operation of the gyrotron were achieved. Also the paper considers suggestions for further improvement of the gyrotrons’ characteristics of this class, including the expansion of the frequency band.

Reference: 
  1. Bykov Yu, Eremeev A, Glyavin M, et al. 24-84-GHz gyrotron systems for technological microwave applications. IEEE Trans. on Plasma Science. 2004;32(1):67–71. DOI: 10.1109/TPS.2004.823904.
  2. Idehara T, Mitsudo S, Ui M, Ogawa I, Sato M, Kawahata K. Development of frequency tunable gyrotrons in millimeter to submillimeter wave range for plasma diagnostics. J. Plasma Fusion Res. Series. 2000;3:407–407.
  3. Hornstein MK, Bajaj VS, Griffin RG, Temkin RJ. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz. IEEE Trans. on Plasma Science. Feb. 2007;35(1):27–30. DOI: 10.1109/TPS.2006.889295.
  4. Nusinovich GS. Introduction to the Physics of Gyrotrons. Baltimore–London: The Johns Hopkins University Press; 2004.
  5. Zaitsev NI, Pankratova TB, Petelin MI, Flyagin VA. Gyrotrons of the range of millimeter and submillimeter waves. Radio Engineering and Electronic Physics. 1974;19(5):1056–1060 (in Russian).
  6. Griffin RG. Dipolar recoupling in MAS spectra of biological solids. Nature Struct. Biology. 1998;5:508–512. DOI: 10.1038/749. PMID: 9665180.
  7. Venediktov NP, Dubrov VV, Zapevalov VE, Kornishin SYu, Kotov AV, Kuftin AN, Malygin OV, Sedov AS, Fiks ASh, Tsalolikhin VI. Experimental study of a continuous-wave high-stability second-harmonic gyrotron for spectroscopy of dynamically polarized nuclei. Radiophys. Quantum El.  2010;53:237–243.DOI: 10.1007/s11141-010-9222-z
  8. Zapevalov VE, Fix ASh, Kopelovich EA, Kornishin SYu, Kotov AV, Kuftin AN, Malygin OV, Manuilov VN, Moiseev MA, Sedov AS, Tsalolikhin VI, Zavolsky NA. Elaboration of 260 GHz Second Harmonic CW Gyrotron with High Stability of Output Parameters for DNP Spectroscopy. 35th International Conference on Infrared, Millimeter and THz Waves (IRMMW-THz 2010). Rome, Italy, 5–10 September 2010. DOI: 10.1109/ICIMW.2010.5612373.
  9. Denysenkov V, Prandolini MJ, Gafurov M, Sezer D, Endeward B, Prisner TF. Liquid state DNP using a 260 GHz high power gyrotron. Phys. Chem. Chem. Phys. 2010;12(22):5789–5790. DOI: 10.1039/c003697h.
  10. Zavolsky NA, Zapevalov VE, Moiseev MA. Numerical study of processes in the cavity of the 170 GHz gyrotron for ITER operating at the TE25,10 mode. International Journal of Infrared and Millimeter Waves. 2000;21(9):1381–1395. DOI: 10.1023/A:1026448822363.
  11. Idehara T, Shibutani K, Nojima H, Pereyaslavets M, Yoshida K, Ogawa I, Tatsukawa T. Study of electron beam misalignment in a submillimeter wave gyrotron. International Journal of Infrared and Millimeter Waves. 1998;19(10):1303–1316. DOI: 10.1023/A:1022611520012.
  12. Nusinovich GS. Competition of modes in a gyromonotron with broken axial symmetry. Radio Engineering and Electronic Physics. 1974;19(8):1788 (in Russian).
  13. Tsimring ShE. Electron Beams and Microwave Vacuum Electronics. Inc., Hoboken, New Jersey: John Wiley & Sons; 2007. 
Received: 
04.05.2012
Accepted: 
04.05.2012
Published: 
31.07.2012
Short text (in English):
(downloads: 112)