ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Manenkov A. B. The leaky modes of multilayered waveguide with nonlinear dielectrics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 4, pp. 20-32. DOI: 10.18500/0869-6632-2008-16-4-20-32

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 95)
Article type: 
621.372; 537.86; 537.87

The leaky modes of multilayered waveguide with nonlinear dielectrics

Manenkov Aleksandr Bencionovich, P.L. Kapitza Institute for Physical Problems of Russian Academy of Sciences

Characteristics of the leaky modes, propagating along the planar layered waveguides with nonlinear media, are studied. The mode phase constants and attenuation coefficients are calculated. In nonlinear structures the dependencies of the mode field distributions on the longitudinal coordinate are shown to differ from exponential ones which are typical for the linear problems. This property results in the effect of the different modes transformation even for the regular geometry of the waveguide.

Key words: 
  1. Akhmediev NN, Ankevich A. Solitons. Moscow: Fizmatlit; 2003. 304 p. (in Russian).
  2. Kivshar YS, Agrawal GP. Optical Solitons: From Fibers to Photonic Crystals. Academic Press; 2003. 540 p.
  3. Ogusu K. Analysis of non-linear multilayer waveguides with Kerr-like permittivities. Opt. Quantum Electron. 1989;21(2):109–116. DOI: 10.1007/BF02190075.
  4. Trutschel U, Lederer F, Golz M. Nonlinear guided waves in multilayer systems. IEEE J. Quantum Electron. 1989;25(2):194–200. DOI: 10.1109/3.16262.
  5. Ryasnyansky AI, Palpant B, et al. Nonlinear optical properties of copper nanoparticles synthesized in indium tin oxide matrix by ion implantation. J. Opt. Soc. Am. B. 2006;23(7):1348–1353. DOI: 10.1364/JOSAB.23.001348.
  6. Vinogradova OP, Marukhina MS, Sidorov AI. Self-defocusing of laser radiation in a composite material containing ZnSe:O nanoparticles. Tech. Phys. Lett. 2005;31(6):528–529. DOI: 10.1134/1.1969789.
  7. Enkrich C, Wegener M, et al. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 2005;95(20):203901. DOI: PhysRevLett.95.203901.
  8. Manenkov AB. Attenuation of fast waves in dielectric pipes. Radio Engineering and Electronic Physics. 1977;22(10):2043–2051 (in Russian).
  9. Adams M. An Introduction to Optical Waveguides. Wiley; 1981. 401 p.
  10. Manenkov AB. The excitation of open homogeneous waveguides. Radiophys. Quantum Electron. 1970;13(5):578–586. DOI: 10.1007/BF01030694.
  11. Landau LD, Lifshits EM. Electrodynamics of Continuous Media. Butterworth-Heinemann; 1984. 460 p.
  12. Vlasov SN, Talanov VI. Self-Focusing Waves. Nizhni Novgorod: IAP RAS; 1997 (in Russian).
  13. Na TY. Computational Methods in Engineering Boundary Value Problems. Academic Press; 1980. 346 p.
  14. Kahaner D, Moler C, Nash S. Numerical Methods and Software/Disk Induced. Prentice Hall; 1988. 495 p.
  15. Hall G, Watt JM, editors. Modern Numerical Methods for Ordinary Differential Equations. Oxford: Clarendon Press; 1976. 336 p.
  16. Molotkov IA, Manenkov AB. On nonlinear tunnel effects. J. Commun. Technol. Electron. 2007;52(7):743–750. DOI: 10.1134/S1064226907070054.
  17. Katselenbaum BZ. Theory of Irregular Waveguides with Slowly Varying Parameters. Moscow: AS USSR; 1961. 216 p. (in Russian)
  18. Nikolsky VV. Variational Methods for Internal Problems of Electrodynamics. Moscow: Nauka; 1967. 460 p. (in Russian).
  19. Vainshtein LA. Diffraction Theory. Microwave Electronics. Moscow: Radio I Svyaz; 1995. 600 p. (in Russian).
  20. Manenkov AB. Orthogonality Conditions for Leaky Modes. Radiophys. Quantum Electron. 2005;48(5):348–360. DOI: 10.1007/s11141-005-0076-8.
Short text (in English):
(downloads: 45)