ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Obychev M. A. The ring system with nonlinear elements, described by the two waves interaction model, manifesting the phenomena of complex analytical dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 96-102. DOI: 10.18500/0869-6632-2013-21-3-96-102

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 60)
Language: 
Russian
Article type: 
Article
UDC: 
517.9

The ring system with nonlinear elements, described by the two waves interaction model, manifesting the phenomena of complex analytical dynamics

Autors: 
Obychev Maksim Andreevich, Saratov State University
Abstract: 

This paper proposes a method of constructing of the ring system, in which the phenomena of complex analytical dynamics such as the Mandelbrot and Julia sets, are implemented in some approximation. The system is non-autonomous, includes frequency filters and nonlinear elements, described by the model of the resonant interaction of waves in quadratic nonlinear dispersive medium.

Reference: 
  1. Peitgen H.-O. and Richter P.H. The beauty of fractals. Images of complex dynamical systems. New-York: Springer-Verlag, 1986.
  2. Peitgen H.-O., Jurgens H., Saupe D. Chaos and fractals: new frontiers of science. New-York: Springer-Verlag, 1992.
  3. Devaney R.L. An Introduction to chaotic dynamical systems. New York: Addison-Wesley, 1989.
  4. Beck C. Physical meaning for Mandelbrot and Julia set // Physica D. 1999. Vol. 125. P. 171.
  5. Исаева О.Б. О возможности реализации феноменов комплексной аналитической динамики в физических системах, построенных из связанных элементов, демонстрирующих удвоения периода // Изв. вузов. Прикладная нелинейная динамика. 2001. Т. 9, No 6. С. 129.
  6. Isaeva O.B., Kuznetsov S.P. On possibility of realization of the phenomena of complex analytic dynamics in physical systems. Novel mechanism of the synchro- nization loss in coupled period-doubling systems // Preprint http://xxx.lanl.gov/abs/nlin.CD/0509012.
  7. Isaeva O.B., Kuznetsov S.P. On possibility of realization of the Mandelbrot set in coupled continuous systems // Preprint http://xxx.lanl.gov/abs/nlin.CD/0509013.
  8. Isaeva O.B., Kuznetsov S.P., Ponomarenko V.I. Mandelbrot set in coupled logistic maps and in an electronic experiment // Phys. Rev. E. 2001. Vol. 64. P. 055201(R).
  9. Isaeva O.B., Kuznetsov S.P., Osbaldestin A.H. A system of alternately excited coupled non-autonomous oscillators manifesting phenomena intrinsic to complex analytical maps // Physica D. 2008. Vol. 237. P. 873.
  10. Ikeda K., Daido H., Akimoto O. Optical turbulence: chaotic behavior of transmitted light from a ring cavity // Phys. Pev. Lett. 1980. Vol. 45. P. 709.
  11. Hagerstrom A.M., Tong W., Wu M., Kalinikos B.A., Eykholt R. Excitation of chaotic spin waves in magnetic film feedback rings through three-wave nonlinear interactions // Phys.Rev. Lett. 2009. Vol. 102. P. 207202.
  12. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука-Физматлит, 1984. 432 с.
  13. Рыскин Н.М., Трубецков Д.И. Нелинейные волны. М.: Наука-Физматлит. 2000. 272 с.  
Received: 
01.03.2013
Accepted: 
01.03.2013
Published: 
31.10.2013
Short text (in English):
(downloads: 50)