ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Govorukhin V. N. Transfer of passive particles in the velocity field of vortex tripole moving on a plane. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, iss. 3, pp. 286-304. DOI: 10.18500/0869-6632-003039, EDN: HKQPIN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Full text PDF(En):
Article type: 
519.6, 532.5

Transfer of passive particles in the velocity field of vortex tripole moving on a plane

Govorukhin V. N., Southern Federal University

Purpose of this article is to study the transport of passive particles in the velocity field of a vortex tripole with a change in the parameter that determines the speed of the configuration movement. A structure consisting of a central vortex and satellite vortices rotating around it with the opposite vorticity is understood as a tripole. We employ a system of three point vortices, the most simple mathematical representation of a vortex tripole, which may be expressed as a system of nonlinear ordinary differential equations with a parameter. Consideration is limited to a particular case of a tripole with zero total vorticity. The influence of the speed values of vortex configuration movement on the processes of passive particle transport has been studied.

Methods. The study was carried out numerically using algorithms based on the dynamical systems approaches including the construction of the Poincare map and the analysis of the dynamics of marker particles. Were carried out long ´ times calculations, corresponding to hundreds and thousands of turns around the tripole center. Integrators of high orders of accuracy were used to solve the Cauchy problems, which made it possible to adequacy of the calculation result control.

Results. We found that transferring passive particles is fundamentally different depending on the speed of the tripole. A vast zone of chaotic dynamics forms in the neighborhood of the vortices when the velocity is low. This zone slowly shifts along with the tripole. There are subregions of active and slow mixing inside the chaos region. The possible stages of particle dynamics are: transfer from the region to the right of the tripole to the area to the left, vigorous mixing near the vortices, and slowly drifting to the region to the left of the tripole. At a high speed of vortex configuration in the entire chaotic region, the particles are strongly mixed. The vortex tripole removes particles from the vicinity of its initial position over long distances and practically does not capture new particles along its path. In intermediate situations, both processes can be realized at varying degrees.

Conclusion. Non-trivial scenarios for the transport of passive particles by a vortex tripole, which can also occur in real vortex configurations of fluids, have been discovered and described.

This work was supported by Russian Foundation for Basic Research, grant No. 19-29-06013
  1. van Heijst GJF, Kloosterziel RC. Tripolar vortices in a rotating fluid. Nature. 1989;338(6216):569– 571. DOI: 10.1038/338569a0.
  2. Kloosterziel RC, van Heijst GJF. An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 1991;223:1–24. DOI: 10.1017/S0022112091001301.
  3. Carnevale GF, Kloosterziel RC. Emergence and evolution of triangular vortices. J. Fluid Mech. 1994;259:305–331. DOI: 10.1017/S0022112094000157.
  4. Trieling RR, van Heijst GJF, Kizner Z. Laboratory experiments on multipolar vortices in a rotating fluid. Physics of Fluids. 2010;22(9):094104. DOI: 10.1063/1.3481797.
  5. Rostami M, Zeitlin V. Evolution of double-eye wall hurricanes and emergence of complex tripolar end states in moist-convective rotating shallow water model. Physics of Fluids. 2022;34(6):066602. DOI: 10.1063/5.0096554.
  6. Carton X, Legras B. The life-cycle of tripoles in two-dimensional incompressible flows. J. Fluid Mech. 1994;267:53–82. DOI: 10.1017/S0022112094001114.
  7. Kizner Z, Khvoles R. The tripole vortex: Experimental evidence and explicit solutions. Phys. Rev. E. 2004;70(1):016307. DOI: 10.1103/PhysRevE.70.016307.
  8. Viudez A. A stable tripole vortex model in two-dimensional Euler flows. J. Fluid Mech. 2019;878:R5. DOI: 10.1017/jfm.2019.730.
  9. Kirchhoff G. Vorlesungen uber mathematische Physik. Bd. 1: Mechanik. Leipzig: Teubner; 1876. 489 s. (in German).
  10. Batchelor GK. An Introduction to Fluid Dynamics. 2nd edition. Cambridge: Cambridge University Press; 2000. 658 p. DOI: 10.1017/CBO9780511800955.
  11. Helmholtz H. Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal fur die reine und angewandte Mathematik. 1858;55:25–55 (in German). DOI: 10.1515/crll.1858.55.25.
  12. Aref H. Motion of three vortices. Physics of Fluids. 1979;22(3):393–400. DOI: 10.1063/1.862605.
  13. Borisov AV, Mamaev IS, Vaskina AV. Stability of new relative equilibria of the system of three point vortices in a circular domain. Russian Journal of Nonlinear Dynamics. 2011;7(1):119–138 (in Russian). DOI: 10.20537/nd1101006.
  14. Kuznetsov L, Zaslavsky GM. Passive particle transport in three-vortex flow. Phys. Rev. E. 2000;61(4):3777–3792. DOI: 10.1103/PhysRevE.61.3777.
  15. Leoncini X, Kuznetsov L, Zaslavsky GM. Motion of three vortices near collapse. Physics of Fluids. 2000;12(8):1911–1927. DOI: 10.1063/1.870440.
  16. Yim H, Kim SC, Sohn SI. Motion of three geostrophic Bessel vortices. Physica D: Nonlinear Phenomena. 2022;441:133509. DOI: 10.1016/j.physd.2022.133509.
  17. Grobli W. Spezielle Problemeuber die Bewegung geradliniger paralleler Wirbelfaden. Vierteljahrschd. Naturforsch. Geselsch. 1877;22:129–165 (in German).
  18. Novikov EA. Dynamics and statistics of a system of vortices. Sov. Phys. JETP. 1975;41(5): 937–943.
  19. Velasco Fuentes OU, van Heijst GJF, van Lipzig NPM. Unsteady behaviour of a topographymodulated tripole. J. Fluid Mech. 1996;307:11–41. DOI: 10.1017/S002211209600002X.
  20. Gudimenko AI, Zakharenko AD. Three-vortex motion with zero total circulation. Journal of Applied Mechanics and Technical Physics. 2010;51(3):343–352. DOI: 10.1007/s10808-010- 0047-5.
  21. Aref H. Stirring by chaotic advection. J. Fluid Mech. 1984;143:1–21. DOI: 10.1017/S00221120 84001233.
  22. Govorukhin VN, Morgulis A, Yudovich VI, Zaslavsky GM. Chaotic advection in compressible helical flow. Phys. Rev. E. 1999;60(3):2788–2798. DOI: 10.1103/PhysRevE.60.2788.
  23. Borisov AV, Mamaev IS, Ramodanov SM. Basic principles and models of dynamic advection. Dokl. Phys. 2010;55(5):223–227. DOI: 10.1134/S1028335810050058.
  24. Ryzhov EA, Koshel KV. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow. Chaos. 2015;25(10):103108. DOI: 10.1063/1.4930897.
  25. Koshel KV, Sokolovskiy MA, Davies PA. Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle. Fluid Dynamics Research. 2008;40(10):695–736. DOI: 10.1016/j.fluiddyn.2008.03.001.
  26. Aref H, Blake JR, Budisic M, Cardoso SSS, Cartwright JHE, Clercx HJH, El Omari K, Feudel U, Golestanian R, Gouillart E, van Heijst GF, Krasnopolskaya TS, Le Guer Y, MacKay RS, Meleshko VV, Metcalfe G, Mezic I, De Moura APS, Piro O, Speetjens MFM, Sturman R, Thiffeault JL, Tuval I. Frontiers of chaotic advection. Rev. Mod. Phys. 2017;89(2):025007. DOI: 10.1103/RevModPhys.89.025007.
  27. Govorukhin VN. Numerical study of dynamical system generated by CABC vector field. Izvestiya VUZ. Applied Nonlinear Dynamics. 2020;28(6):633–642 (in Russian). DOI: 10.18500/0869-6632- 2020-28-6-633-642.
  28. Petrovskaja NV. Low-order dynamical models for vortical flows of inviscid fluid in square area. Izvestiya VUZ. Applied Nonlinear Dynamics. 2009;17(6):159–172 (in Russian). DOI: 10.18500/ 0869-6632-2009-17-6-159-172.
  29. Delbende I, Sel¸cuk C, Rossi M. Nonlinear dynamics of two helical vortices: A dynamical system approach. Phys. Rev. Fluids. 2021;6(8):084701. DOI: 10.1103/PhysRevFluids.6.084701.
  30. Sengupta TK, Singh N, Suman VK. Dynamical system approach to instability of flow past a circular cylinder. J. Fluid Mech. 2010;656:82–115. DOI: 10.1017/S0022112010001035.
  31. Prants SV. Dynamical systems theory methods to study mixing and transport in the ocean. Physica Scripta. 2013;87(3):038115. DOI: 10.1088/0031-8949/87/03/038115.
  32. Ryzhov EA, Koshel KV, Carton XJ. Passive scalar advection in the vicinity of two point vortices in a deformation flow. European Journal of Mechanics - B/Fluids. 2012;34:121–130. DOI: 10.1016/j.euromechflu.2012.01.005.
  33. Govorukhin VN. Numerical analysis of the dynamics of distributed vortex configurations. Comput. Math. Math. Phys. 2016;56(8):1474–1487. DOI: 10.1134/S0965542516080078.
  34. Govorukhin VN, Filimonova AM. Analysis of the structure of vortex planar flows and their changes with time. Computational Continuum Mechanics. 2021;14(4):367–376. DOI: 10.7242/1999- 6691/2021.14.4.30.
  35. Govorukhin VN. An extended and improved particle-spectral method for analysis of unsteady inviscid incompressible flows through a channel of finite length. Int. J. Numer. Meth. Fluids. 2023;95(4):579–602. DOI: 10.1002/fld.5163.
  36. Metcalfe G, Lester D, Trefry M. A primer on the dynamical systems approach to transport in porous media. Transport in Porous Media. 2023;146(1–2):55–84. DOI: 10.1007/s11242-022- 01811-6.
  37. Borisov AV, Mamaev IS. Mathematical Methods in the Dynamics of Vortex Structures. Moscow– Izhevsk: Institute of Computer Science; 2005. 368 p. (in Russian).
  38. Ziglin SL. Nonintegrability of a problem on the motion of four point vortices. Sov. Math. Dokl. 1980;21:296–299.
  39. Aref H. Stability of relative equilibria of three vortices. Physics of Fluids. 2009;21(9):094101. DOI: 10.1063/1.3216063.
  40. Kizner Z. Stability of point-vortex multipoles revisited. Physics of Fluids. 2011;23(6):064104. DOI: 10.1063/1.3596270.
  41. Rott N. Three-vortex motion with zero total circulation. Zeitschrift fur angewandte Mathematikund Physik ZAMP. 1989;40(4):473–494. DOI: 10.1007/BF00944801.
  42. Arnold VI, Kozlov VV, Neishtadt AI. Mathematical Aspects of Classical and Celestial Mechanics. 2nd edition. Berlin, Heidelberg: Springer; 1997. 294 p. DOI: 10.1007/978-3-642-61237-4.
  43. de la Llave R. A tutorial on KAM theory. In: Katok A, de la Llave R, Pesin Y, Weiss H, editors. Smooth Ergodic Theory and Its Applications. Rhode: American Mathematical Society; 2001. 133 p. DOI: 10.1090/pspum/069/1858536.
  44. Govorukhin VN. On the choice of a method for integrating the equations of motion of a set of fluid particles. Comput. Math. Math. Phys. 2014;54(4):706–718. DOI: 10.1134/S0965542514040071.
  45. Hairer E, Wanner G, Lubich C. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Vol. 31 of Springer Series in Computational Mathematics. Berlin, Heidelberg: Springer; 2002. 515 p. DOI: 10.1007/978-3-662-05018-7.
  46. Hairer E, Nørsett SP, Wanner G. Solving Ordinary Differential Equations I: Nonstiff Problems. Berlin, Heidelberg: Springer; 1987. 482 p. DOI: 10.1007/978-3-662-12607-3.
  47. Verner JH. Numerically optimal Runge–Kutta pairs with interpolants. Numerical Algorithms. 2010;53(2–3):383–396. DOI: 10.1007/s11075-009-9290-3.
  48. Prince PJ, Dormand JR. High order embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics. 1981;7(1):67–75. DOI: 10.1016/0771-050X(81)90010-3.
  49. Govorukhin V. ode87 Integrator [Electronic resource]. MATLAB Central File Exchange. Retrieved February 28, 2023. Available from: 3616-ode87-integrator.
Available online: