ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


For citation:

Seleznev E. P., Dudova A. S. Types of cycles symmetry in coupled period doubling systems. Izvestiya VUZ. Applied Nonlinear Dynamics, 2000, vol. 8, iss. 2, pp. 16-23.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
518.30

Types of cycles symmetry in coupled period doubling systems

Autors: 
Seleznev Evgeny Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Dudova Anastasiia Sergeevna, Saratov State University
Abstract: 

Types of symmetry of various cycles and their evolution in coupled period doubling systems are discussed. Full symmetry leads to formation of new scenario transition to chaos. It is shown that at driven loss of full symmetry for several cycles local symmetry takes place. As well as full symmetry cycles the local one demonstrates quasiperiodic route to chaos.

Key words: 
Acknowledgments: 
The authors are grateful to Prof. B.P. Bezruchko for fruitful discussion of the work and critical comments. The work was supported by the RFBR (grant № 99-02-17735) and Federal target program "Integration", grant № 696.3.
Reference: 
  1. Holmes Р. А nonlinear oscillator with strange attractor. Phylos. Trans. 1979;292(1394):419-448. DOI: 10.1098/rsta.1979.0068.
  2. Sato S, Sano M, Sawada Y. Universal scaling property in bifurcation structure of Duffing’s and generalized Duffing’s equation. Phys. Rev. А. 1983;28(3):1654-1658. DOI: 10.1103/PhysRevA.28.1654.
  3. Parlitz U, Lauterborn W. Superstructure in bifurcation set of the Duffing’s equation . Phys. Lett. A. 1985;107(8):351-355. DOI: 10.1016/0375-9601(85)90687-5.
  4. Englisch V, Lauterborn W. Regular window structure of а double-well Duffing’s oscillator. Phys. Rev. А. 1991;44(2):916-924. DOI: 10.1103/physreva.44.916.
  5. Кrupa M, Roberts M. Symmetry breaking аnd symmetry locking in equivariant circle maps. Physica D. 1992;57(3-4):417-435. DOI: 10.1016/0167-2789(92)90011-B.
  6. Bressloff PC, Coombes S. Symmetry and phase-locking in а ring of pulse-coupled oscillators with distributed delays. Physica D. 1999;126(1-2):99-122. DOI: 10.1016/S0167-2789(98)00264-4.
  7. Gu Y, Tung M, Yuan J-M, Feng DH, Narducci LM. Crisis аnd hysteresis in coupled logistic maps. Phys. Rev. Lett. 1984;52(9):701-704. DOI: 10.1103/PhysRevLett.52.701.
  8. Kuznetsov SP. Universality and similarity in the behavior of coupled Feigenbaum systems. Radiophysics and Quantum Electronics. 1985. Т. 28(8) C.991-1007.
  9. Astakhov VV, Bezruchko BP, Erastova EN, Seleznev EP. Types of oscillations and their evolution in dissipatively coupled Feigenbaum systems. Tech. Phys. 1990;60(10):19-26. (in Russian).
  10. Prokhorov MD. Types of oscillations of dissipatively coupled systems with period doubling under strong coupling. Izvestiya VUZ. Applied Nonlinear Dynamics. 1996;4(4-5):99-107. (in Russian).
  11. Anishchenko VS, Letchford TE, Safonova MI. Effects of synchronization and bifurcation of synchronous and quasiperiodic oscillations in a non-autonomous generator. Radiophysics and Quantum Electronics. 1985;28(9):1112-1125. (in Russian).
  12. Anishchenko VS. Destruction of quasiperiodic oscillations and chaos in kissative systems. Tech. Phys. 1986;56(2):225-237. (in Russian).
  13. Kipchatov AA, Koronovsky AA. Subtle effects of self-similar behavior in a piecewise linear system near the torus birth bifurcation line. Izvestiya VUZ. Applied Nonlinear Dynamics. 1997;5(2-3):17-23. (in Russian).
Received: 
31.01.2000
Accepted: 
18.03.2000
Published: 
25.05.2000