ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Jalnine A. Y., Kuznetsov S. P. Universality and scaling in the circle map under external periodic driving. Izvestiya VUZ. Applied Nonlinear Dynamics, 2002, vol. 10, iss. 6, pp. 3-15. DOI: 10.18500/0869-6632-2002-10-6-3-15

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 0)
Article type: 

Universality and scaling in the circle map under external periodic driving

Jalnine Aleksej Yurevich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
Kuznetsov Sergey Petrovich, Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

We investigate scaling properties of а neighborhood of the «golden mean» critical point in the circle map in presence of external periodic forcing upon the system. We consider such perturbations of the fixed point of the Feigenbaum-Kadanoff-Shenker renormalization group equation, which are initiated by periodic forcing. We show that, depending upon the frequency of external forcing, two types of scaling behavior can be observed. The first (P-type) 18 associated with periodic repetition of the structures of dynamical regimes in parameter space under subsequent scaling transformations. For the second case (Q-type of scaling) quasiperiodic behavior of structures in the parameter space takes place. The both types of scaling are illustrated by parameter-space diagrams for re-scaled Lyapunov exponents.

Key words: 
The work was supported by the RFBR, grant №00-02-17509.

1. Shenker SJ. Scaling behavior in а map оf а circle onto itself: Empirical results. Physica D. 1982;5(2–3):405–411. DOI: 10.1016/0167-2789(82)90033-1.
2. Feigenbaum MJ, Kadanoff LP, Shenker SJ. Quasiperiodicity in dissipative systems: а renormalization group analysis. Physica D. 1982;5(2–3):370–386. DOI: 10.1016/0167-2789(82)90030-6.
3. Rand D, Ostlund S, Sethna J, Siggia Е. Universal transition from quasiperiodicity to chaos in dissipative systems. Phys. Rev. Lett. 1982;49(2):132–135. DOI: 10.1103/PhysRevLett.49.132.
4. Ostlund S, Rand D, Sethna J, Siggia Е. Universal properties оf the transition from quasi-periodicity to chaos in dissipative systems. Physica D. 1983;8(3):303–342. DOI: 10.1016/0167-2789(83)90229-4.
5. Jensen MH, Bak Р, Bohr Т. Complete devil’s staircase, fractal dimension, and universality оf mode-locking structure in thе circle mар. Phys. Rev. Lett. 1983;50(21):1637–1639. DOI: 10.1103/PhysRevLett.50.1637.
6. Kim S, Ostlund S. Universal scaling in circle mар. Physica D. 1989;39(2–3):365–392. DOI: 10.1016/0167-2789(89)90017-1.
7. Cvitanovic P, Gunaratne GH, Vinson MJ. On the mode-locking universality for critical circle mар. Nonlinearity. 1990;3:873–885.
8. Kuznetsov SP. Dynamic Chaos. Moscow: Fizmatlit; 2001. 296 p. (in Russian).
9. Kuznetsov AP, Kuznetsov SP, Ivankov NY, Osin AA. Scaling during the transition to chaos through the destruction of quasiperiodic motion with a frequency ratio specified by the golden mean. Izvestiya VUZ. Applied Nonlinear Dynamics. 2000;8(4):3 (in Russian).
10. Arnold VI. Cardiac arrythmias and circle mappings. CHAOS. 1991;1(1):20–24. DOI: 10.1063/1.165812.
11. Ivan’kov NY, Kuznetsov SP. Different types оf scaling in the dynamics оf period-doubling maps under external periodic driving. Discrete Dynamics in Nature and Society. 2000;5:781025. DOI: 10.1155/S1026022600000546.
12. Kuznetsov SP. Effect of a periodic external perturbation on a system which exhibits an order-chaos transition through period-doubling-bifurcations. J. Exp. Theor. Phys. 1984;39(3):133–136.
13. Kuznetsov SP, Pikovsky AS. Renormalization group for thе response function and spectrum оf the period-doubling system. Phys. Lett. А. 1989;140(4):166–172. DOI: 10.1016/0375-9601(89)90887-6.
14. Graham RL, Knuth DE, Patashnik O. Concrete Mathematic. Addison - Wesley Publ.; 1989. 640 p.
15. Bohr T, Bak Р, Jensen MH. Transition to chaos by interaction оf resonances in dissipative systems. 2. Josephson junctions, charge-density waves, and standard maps. Phys. Rev. A. 1984;30(4):1970–1981. DOI: 10.1103/PhysRevA.30.1970.
16. Glazier JA, Gunaratne G, Libchaber А. F(a) curves - experimental results. Phys. Rev. A. 1988;37(2):523–530. DOI: 10.1103/PhysRevA.37.523.
17. Glazier JA, Libchaber A. Quasi-periodicity and dynamical systems – An experimentalists view. IЕЕЕ Trans. Circuits Syst. 1988;35(7):790–809. DOI: 10.1109/31.1826.
18. Stavans J, Helsot F, Libchaber А. Fixed winding number and the quasiperiodic route to chaos in а convective fluid. Phys. Rev. Lett. 1985;55(6):595–599. DOI: 10.1103/PhysRevLett.55.596.
19. Levi BG. New global fractal formalism describes various scenarios of transition to chaos. In: Physics Abroad. Vol. 87. Moscow: Mir; 1987. 263 p. (in Russian).