For citation:
Klimontovich Y. L. What the turbulence is?. Izvestiya VUZ. Applied Nonlinear Dynamics, 1995, vol. 3, iss. 2, pp. 6-36.
What the turbulence is?
The main aim of this paper is to clear up general propertics of the turbulent motion as а physical phenomena. With this it becomes possible to-interpret the transition from the laminar flow to the turbulent one as а sequence of non-equilibrium phase transitions which represent a self-organization process. This conclusion is based on the criterion of the «S-Theorem». Therefore, the transition from the laminar to the turbulent flow in open systems
represents the «transition from chaos to order». In а closed system с backward «transition from order to chaos» is possible as
well. For instance, a turbulent motion prepared at an initial moment will degradate to a most chaotic flow. This example show the process of self-organization is possible in open systems only
- Bakai AS, Sigov YuS. Multifaceted Turbulence. М.: Znanie; 1989. 48 p.
- Berge Р, Pomeau Y, Vidal Ch. L’Order dans le Chaos. Paris: Hermann; 1984. 353 p. (in French).
- Batchelor GK. The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press; 1953. 197 p.
- Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press; 1961. 652 p.
- Gledzer EB, Dolzhanskii FV, Obukhov АМ. Hydrodynamic Systems and Their Applications. М.: Nauka; 1981. 366 p.
- Grechannyi OA.Statistical Theory of Irreversible Processes. Kyiv: Naukova Dumka; 1989. 373 p.
- Dubnishchev YuN, Rinkevichyus BS. Methods of laser Doppler anemometry. М.: Nauka; 1982. 303 p.
- Ebeling W, Klimontovich YuL. Self- Organization and Turbulence in Liquids. Leipzig: Teubner; 1984. 196 p.
- Zhigulev VN, Tumin АМ. The Occurrence of Turbulence. Novosibirsk: Nauka; 1987. 278 p.
- Zubarev DN, Morozov VG, Troshkin OV. Turbulence as a nonequilibrium phase transition. Theor. Math. Phys. 1992;92(2):896-908. DOI: 10.1007/BF01015556.
- Haken H. Advanced Synergetics. Berlin: Springer; 1983. 356 p. DOI: 10.1007/978-3-642-45553-7.
- Haken H. Information and Self-Organization. Berlin: Springer; 1988. 196 p. DOI: 10.1007/978-3-662-07893-8.
- Kadomtsev BB. Collective Processes in Plasma. М.: Nauka; 1976. 238 p.
- Klimontovich YuL. Dissipative equations for many-particle distribution functions. Sov. Phys. Usp. 1983;26(4):366-372. DOI: 10.1070/PU1983v026n04ABEH004397.
- Klimontovich YuL. Statistical Physics. N.Y.: Harwood Academic Publishers; 1986. 734 p.
- Klimontovich YuL. Entropy and entropy production in laminar and turbulent currents. Tech. Phys. Lett. 1984; 10(2):80-83.
- Klimontovich YuL, Engel-Herbert H. Averaged stationary turbulent currents of Cuette and Poiseille in an incompressible liquid. Tech. Phys. 1984;54(3):440-449.
- Klimontovich YuL, Bonitz M. Evolution of the entropy of stationary states in selforganization processes in the control parameter space. Z. Physik B - Condensed Matter. 1988;70:241-249. DOI: 10.1007/BF01318306.
- Klimontovich YuL. Turbulent Motion and the Structure of Chaos. Dordrecht: Kluwer Academic Publishers; 1991. 401 p. DOI: 10.1007/978-94-011-3426-2.
- Klimontovich YuL. The unified description of kinetic and hydrodynamic processes. Phys. Lett. A. 1992;170(6):434-438. DOI: 10.1016/0375-9601(92)90747-a.
- Klimontovich YuL. On the need for and the possibility of a unified description of kinetic and hydrodynamic processes. Theor. Math. Phys. 1992;92:909-921. DOI: 10.1007/BF01015557.
- From the Hamiltonian mechanics to a continuous media. Dissipative structures. Criteria of self-organization. Theor. Math. Phys. 1993;96(3):1035-1056. DOI: 10.1007/BF01019066.
- Klimontovich YuL. Criteria of self- organization. Chaos, Solitons & Fractals. 1995;5(10):1985-2002. DOI: 10.1016/0960-0779(94)00196-W.
- Klimontovich YuL. Statistical Theory of Open Systems. Dordrecht: Kluwer Academic Publishers; 1995. 569 p. DOI: 10.1007/978-94-011-0175-2.
- Klimontovich YuL. Statistical Theory of Open Systems. М.: Yanus; 1995. 508 p.
- Klimontovich YuL, Wilhelmsson H, Yakimenko IP, Zagorodny AG. Statistical theory of plasma-molecular systems. Phys. Rep. 1989; 175(5-6):263-401. DOI: 10.1016/0370-1573(89)90054-9.
- Klimontovich YuL, Wilhelmsson H, Yakimenko IP, Zagorodny AG. Statistical Theory of Plasma-Molecular Systems. М.: Moscow University Press; 1990. 222 p.
- Landau LD, Lifshits ЕМ. Hydrodynamics. М.: Nauka; 1986. 736 p.
- Lesieur М. Turbulence in Fluids. Dordrecht: Kluwer Academic Publishers; 1990. 412 p. DOI: 10.1007/978-94-009-0533-7.
- Moffat HK. Some developments of turbulence theory developments. J. Fluid Mech. 1981;106:27–47. DOI: 10.1017/S002211208100150X.
- Monin АА, Yaglom АМ. Statistical Fluid Mechanics. Cambridge: MIT Press; 1971. 782 p.
- Neimark YuS, Landa PS. Stochastic and Chaotic Oscillations. Dordrecht: Kluwer; 1992. 500 p. DOI: 10.1007/978-94-011-2596-3.
- Novikov EA. Functionals and the Random-force Method in Turbulence Theory. J. Exp. Theor. Phys. 1965;20(5):1290-1294.
- Prigogine I, Stengers I. Order out of Chaos. London: Heinemann; 1984. 349 p.
- Rabinovich МI, Trubetskov DI. Introduction to the Theory of Oscillations and Waves. М.: Nauka; 1984. 432 p.
- Sitenko АG. Fluctuations and nonlinear interaction of waves in plasma. Kiev: Naukova Dumka; 1977. 248 p.
- Frost W, Moulden ТH. Handbook of Turbulence. N.Y.: Springer; 1977. 498 p. DOI: 10.1007/978-1-4684-2322-8
- Schlichting H, Gersten K. Boundary-Layer Theory. Berlin: Springer; 2016. 805 p. DOI: 10.1007/978-3-662-52919-5.
- Tsytovich VN. Theory of Turbulent Plasma. M.: Atomizdat; 1971. 423 p.
- 150 reads