ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)

For citation:

Kurkin S. A., Koronovskii A. A., Levin Y. I., Hramov A. E. Wideband chaotic generation and optimization of characteristics in microwave generator with electronic feedback and magnetic periodic focusing system. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 3, pp. 104-127. DOI: 10.18500/0869-6632-2010-18-3-104-127

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
(downloads: 132)
Article type: 

Wideband chaotic generation and optimization of characteristics in microwave generator with electronic feedback and magnetic periodic focusing system

Kurkin Semen Andreevich, Innopolis University
Koronovskii Aleksei Aleksandrovich, Saratov State University
Levin Yurij Ivanovich, Saratov State University
Hramov Aleksandr Evgenevich, Immanuel Kant Baltic Federal University

With the help of 2D numerical model it has been investigated the nonlinear dynamics and generation of wideband chaotic signals in the generator based on electron beam with the virtual cathode. It has been discovered the strong influence of the external non-uniform magnetic field on the nonlinear dynamics of the virtual cathode in the system. It has been analyzed the physical processes responsible for the discovered dependency of dynamics of the electron beam with the virtual cathode on the parameters of the external nonuniform magnetic field. The dependencies of the output generation power in the system with virtual cathode on the characteristics of the external non-uniform magnetic field were investigated. Optimization of the parameters of magnetic periodic focusing system of the generator for the maximum bandwidth and power of the chaotic generation was carried out.

  1. Koronovskii AA,  Trubetskov DI, Hramov AE. Methods of Nonlinear Dynamics and Chaos Theory in Problems of Microwave Electronics. Vol. 2. Non-stationary and Chaotic Processes. Moscow: Fizmatlit; 2009.  (in Russian).
  2. Benford J, Swegle JA, Schamiloglu E. High Power Microwaves. CRC Press, Taylor and Francis; 2007.
  3. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. Vol.2. Moscow: Fizmatlit; 2004. (in Russian).
  4. Anfinogentov VG, Kalinin YuA. Experimental investigation of oscillatory phenomena in an electron beam with a virtual cathode. Lectures on microwave electronics and radiophysics (10th winter school seminar). Book 2. 1996:83–88 (in Russian).
  5. Egorov EN, Kalinin YuA, Levin YuI, Trubetskov DI, Khramov AE. Vacuum generators of broadband chaotic oscillations based on nonrelativistic electron beams with virtual cathode. Bulletin of the Russian Academy of Sciences: Physics. 2005;69(12):1921–1924.
  6. Kalinin YuA, Koronovskii AA, Khramov AE, Egorov EN, Filatov RA. Experimental and theoretical investigations of stochastic oscillatory phenomena in a nonrelativistic electron beam with a virtual cathode. Plasma Physics Reports. 2005;31(11):938–952. DOI: 10.1134/1.2131130.
  7. Khramov AE, Egorov EN, Kalinin YuA. Microwave vacuum device: Patent for invention No. 2288518, 2006. Inventions. Utility Models: Official Bulletin of the Federal Service for Intellectual Property, Patents and Trademarks. Moscow: FIPS; 2006. (in Russian).
  8. Meadows BK, Heath TH, Neff JD, et al. Nonlinear antenna technology. Proceedings IEEE. 2002;90(5):882–897. DOI: 10.1109/JPROC.2002.1015012.
  9. Zalogin NN, Kislov VV. Broadband Chaotic Signals in Radio Engineering and Information Systems. Moscow: Radiotekhnika; 2006. (in Russian).
  10. Dmitriev BS, Hramov AE, Koronovskii AA, Starodubov AV, Trubetskov DI, Zharkov YD. First experimental observation of generalized synchronization phenomena in microwave oscillators. Physical Review Letters. 2009;102(7):074101. DOI: 10.1103/PhysRevLett.102.074101.
  11. Koronovskii AA, Moskalenko OI, Hramov AE. On the use of chaotic synchronization for secure communication. Phys. Usp. 2009;52(12):1213–1238.
  12. Dmitriev AS, Panas AI. Dynamic Chaos: Novel Type of Information Carrier for Communications Systems. Moscow: Fizmatlit; 2002.
  13. Egorov EN, Kalinin YuA, Koronovski AA, Hramov AE. Analysis of the dependence of the microwave generation power of a low-voltage vircator on controlling parameters. Technical Physics. 2007;52(10):1387–1390. DOI: 10.1134/S1063784207100258.
  14. Kalinin YA, Koronovskii AA, Hramov AE. Chaotic wideband microwave oscillations in a hybrid system consisting of a traveling wave tube and a collector oscillator. Tech. Phys. 2008;53:614–619. DOI: 10.1134/S1063784208050149.
  15. Kalinin YuA, Kurkin SA, Trubetskov DI, Hramov AE. Microwave generators of chaotic oscillations based on the beam with virtual cathode. Telecommunications and Radio Engineering. 2008;9:53–55 (in Russian).
  16. Filatov RA, Hramov AE, Bliokh YP, Koronovskii AA, Felsteiner J. Influence of background gas ionization on oscillations in a virtual cathode with a retarding potential. Physics of Plasmas. 2009;16(3):033106. DOI: 10.1063/1.3080200.
  17. Kalinin YuA, Starodubov A, Volkova LN. Ultrabroadband generators of noiselike high-frequency and microwave oscillations with electron feedback. Technical Physics Letters. 2010;36:112–114. DOI: 10.1134/S1063785010020069.
  18. Kuraev AA., Trubetskov DI. Methods of nonlinear dynamics and chaos theory in problems of of Microwave Electronics. Vol. 1: Stationary processes. Moscow: Fizmatlit; 2009. 288 p. (in Russian).
  19. Batura MP, Kuraev AA, Sinitsyn AK. Fundamentals of the theory calculation and optimization of modern electronic devices. Minsk: Belarusian State University of Informatics and Radio Electronics; 2007. (in Russian).
  20. Kuraev AA,  Baiburin VB, Il’in EM. Mathematical Models and Methods of Optimal  Design of Microwave Devices. Minsk: Navuka i Tekhnika; 1990.
  21. Nikolov NA, Kostov KG, Spassovsky IP, Spassov VA. High-power microwave generation from virtual cathode in foilless diode (vircator). Electronics Letters. 1988;24(23):1445–1446.
  22. Kostov KG, Nikolov NA, Spassovsky IP, Spassov VA. Experimental study of virtual cathode oscillator in uniform magnetic field. Appl. Phys. Lett. 1992;60(21):2598–2600. DOI: 10.1063/1.107472.
  23. Kostov KG, Nikolov NA, Spassov VA. Excitation of transverse electric modes in axially extracted virtual cathode oscillator. Electronics Letters. 1993;29(12):1069–1070. DOI: 10.1049/el:19930714.
  24. Kostov KG, Nikolov NA. Microwave generation from an axially extracted virtual cathode oscillator with a guide magnetic field. Phys. Plasmas. 1994;1(4):1034–1039. DOI: 10.1063/1.870783.
  25. Gadetskii NP, Magda I, Naisteter SI, Prokopenko Y, Chumakov V.  A generator using supercritical REB current with controlled feedback. Plasma Physics Reports. 1993;19(4):273–276.
  26. Kostov KG, Yovchev IG, Nikolov NA. Numerical investigation of microwave generation in foilless diode vircator. Electron Letters. 1999;35(19):1647–1648. DOI: 10.1049/el:19991122.
  27. Jiang W, Kitano H, Huang L, Masugata K, Yatsui K. Effect of longitudinal magnetic field on microwave efficiency of virtual cathode oscillator. IEEE Trans. Plasma Sci. 1996;24:187–192. DOI: 10.1109/27.491758.
  28. Egorov EN, Hramov AE. Investigation of the chaotic dynamics of an electron beam with a virtual cathode in an external magnetic field. Plasma Physics Reports. 2006;32(8):683–694. DOI: 10.1134/S1063780X06080058.
  29. Hramov AE, Koronovskii AA, Morozov MYu, Mushtakov AV. Effect of external magnetic field on critical current for the onset of virtual cathode oscillations in relativistic electron beams. Phys. Lett. A. 2008;372:876–883. DOI: 10.1016/j.physleta.2007.08.039.
  30. Morozov MYu, Hramov AE. Effect of the external magnetic field on the critical current for the onset of a virtual cathode in an electron beam. Plasma Physics Reports. 2007;33(7):553–561. DOI: 10.1134/S1063780X07070045.
  31. Singh G, Chaturvedi S. Secondary virtual-cathode formation in a low-voltage vircator: PIC simulations. IEEE Transactions on Plasma Science. 2008;36(3):694–700. DOI: 10.1109/TPS.2008.922499.
  32. Dubinov AE, Selemir VD. Microwave generation features in a vircator with an inhomogeneous magnetic field in the interaction region. Technical Physics Letters. 2001;27(7):557–559. DOI: 10.1134/1.1388942.
  33. Kurkin SA, Koronovskii AA, Hramov AE. Chaotization of the virtual cathode oscillations in the external magnetic field created by a ring magnet. Bulletin of the Russian Academy of Sciences: Physics. 2009;73(12):1628–1631. DOI: 10.3103/S1062873809120193.
  34. Alimovskii IV. Electron beams and electron guns. Moscow: Sov. Radio; 1966. (in Russian).
  35. Roshal AS. Simulation of charged beams. Moscow: Atomizdat; 1979. (in Russian).
  36. Birdsall CK, Langdon AB. Plasma physics, via computer simulation. NY: McGraw-Hill; 1985.
  37. Trubetskov DI, Khramov AE. Lectures on Microwave Electronics for Physicists. In 2 volumes. Moscow: Fizmatlit; 2003. (in Russian).
  38. Morey IJ, Birdsall CK. Travelling-wave-tube simulation: the IBC code. IEEE Trans. Plasma Sci. 1990;18(3):482–489. DOI: 10.1109/27.55918.
  39. Egorov EN, Kalinin YuA, Koronovskii AA, Hramov AE, Morozov MYu. Microwave generation power in a nonrelativistic electron beam with virtual cathode in a retarding electric field. Technical Physics Letters. 2006;32:402–405.
  40. Anfinogentov VG. Chaotic oscillations in an electron beam with a virtual cathode. Izvestiya VUZ. Applied Nonlinear Dynamics. 1994;2(5):69–83. (in Russian)
  41. Anfinogentov VG. Interaction of coherent structures and chaotic dynamics in an electron beam with a virtual cathode. Tech. Phys. Lett. 1995;21(8):70–75. (in Russian)
  42. Anfinogentov AG, Khramov AE. Intricate behavior of an electron flux with virtual cathode and chaotic signal generation in virthode systems. Bulletin of The Russian Academy of Sciences: Physics. 1997;61:1882–1890.
  43. Anfinogentov VG, Khramov AE. On the mechanism of occurrence of chaotic dynamics in a vacuum microwave generator with a virtual cathode. Radiophysics and Quantum Electronics. 1998;41(9):764–770. DOI: 10.1007/BF02677631.
  44. Koronovskii AA, Khramov AE. Wavelet bicoherence analysis as a method for investigating coherent structures in an electron beam with an overcritical current. Plasma Physics Reports. 2002;28(8):666–681. DOI: 10.1134/1.1501324.
  45. Egorov EN, Kalinin YuA, Koronovskii AA, Levin YuI, Hramov AE. Analysis of the formation of structures and chaotic dynamics in a nonrelativistic electron beam with a virtual cathode in the presence of a decelerating field. J. Commun. Technol. Electron. 2007;52(1):45–57.
  46. Khramov AE, Koronovskii AA, Levin Y. Bicoherent Wavelet Analysis of the Structure Formation in an Electron Beam with Virtual Cathode. Tech. Phys. Lett. 2002;28(7):560–563.
  47. Egorov EN, Kalinin YuA, Koronovskii AA, Trubetskov DI, Hramov AE. The processes of formation and nonstationary dynamics of a virtual cathode in a nonrelativistic electron beam in the decelerating field (two-dimensional approximation). Radiophysics and Quantum Electronics. 2006;49(10):760–768. DOI: 10.1007/s11141-006-0110-5.
  48. Kurkin SA, Koronovskii AA, Hramov AE. Nonlinear dynamics and chaotization of oscillations of a virtual cathode in an annular electron beam in a uniform external magnetic field. Plasma Phys. Rep. 2009;35:628–642. DOI: 10.1134/S1063780X09080029.
  49. Kurkin SA, Koronovskii AA, Hramov AE. Formation and dynamics of a virtual cathode in a tubular electron beam placed in a magnetic field. Tech. Phys. 2009;54:1520–1528. DOI: 10.1134/S106378420910017X.
  50. Kurkin SA, Hramov AE. Virtual cathode formation in annular electron beam in an external magnetic field. Technical Physics Letters. 2009;35(1):23–25. DOI: 10.1134/S1063785009010076.
  51. Tsimring SE. Electron beams and microwave vacuum electronics. Publ. by John Wiley and Sons, Inc., Hoboken, New Jersey; 2007.
  52. Alyokhin BV, Dubinov AE, Selemir VD, et al. Theoretical and Experimental Studies of Virtual Cathode Microwave Devices. IEEE Transactions on Plasma Science. 1994;22(5):945–959. DOI: 10.1109/27.338312.
  53. Brandt HE. The turbutron. IEEE Trans. Plasma Sci. 1985;13(6):513–519. DOI: 10.1109/TPS.1985.4316466.
  54. Trubetskov DI, Mchedlova ES, Anfinogentov VG, Ponomarenko VI, Ryskin NM. Nonlinear waves, chaos, patterns in microwave devices. Chaos. 1996;6(3):358–367. DOI: 10.1063/1.166179.
  55. Davis HA, Bartsch RR, Kwan TJT, Sherwood EG, Stringfield RM. Experimental confirmation of the reditron concept. IEEE Trans. Plasma Sci. 1988;16(2):192–198. DOI: 10.1109/27.3814.
Short text (in English):
(downloads: 83)