ISSN 0869-6632 (Print)
ISSN 2542-1905 (Online)


обобщенная синхронизация

Multistability near the boundary of noise-induced synchronization in ensembles of uncoupled chaotic systems

The aim of this work is to study the possibility of the existence of multistability near the boundary of noise-induced synchronization in chaotic continuous and discrete systems. Ensembles of uncoupled Lorenz systems and logistic maps being under influence of a common source of white noise have been chosen as an object under study.

Мультистабильность вблизи границы индуцированной шумом синхронизации в ансамблях несвязанных хаотических систем

Целью работы является исследование возможности существования мультистабильности вблизи границы индуцированной шумом синхронизации в хаотических системах с непрерывным и дискретным временем. В качестве объектов исследования выбраны ансамбли осцилляторов Лоренца и логистических отображений, находящиеся под действием общего источника белого шума. Результатом работы является доказательство наличия мультистабильности вблизи границы синхронизации, индуцированной шумом.

On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor

Aim of this work is to study the possibility of existence of multistability near the boundary of generalized synchronization in systems with complex attractor topology. Unidirectionally coupled Lorentz systems have been chosen as an object of study, and a modified auxiliary system method has been used to detect the presence of the synchronous regime. Result of the work is a proof of the presence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with a complex topology of attractor.

О существовании мультистабильности вблизи границы обобщенной синхронизации в однонаправленно связанных системах со сложной топологией аттрактора

Целью работы является исследование возможности существования мультистабильности вблизи границы обобщенной синхронизации в системах со сложной топологией аттрактора. В качестве объектов исследования выбраны однонаправленно связанные системы Лоренца, а для диагностики синхронного режима использован модифицированный метод вспомогательной системы. Результатом работы является доказательство наличия мультистабильности вблизи границы обобщенной синхронизации в однонаправленно связанных системах со сложной топологией аттрактора.

Method for characteristic phase detection in systems with complex topology of attractor being near the boundary of generalized synchronization

The aim of the paper consists in the development of universal method for the detection of characteristic phases of the behavior in systems with complex topology of attractor being in the regime of intermittent generalized synchronization. The method is based on an analysis of the location of representation points on the attractors of interacting systems coupled unidirectionally or mutually.

Метод выделения характерных фаз поведения в системах со сложной топологией аттрактора, находящихся вблизи границы обобщенной синхронизации

Целью работы является разработка универсального метода выделения характерных фаз поведения систем со сложной топологией аттрактора, находящихся в режиме перемежающейся обобщенной синхронизации. Метод основан на анализе расположения изображающих точек на аттракторах взаимодействующих систем, связанных однонаправленно или взаимно.

Relationship of generalized and phase synchronization in two unidirectionally coupled chaotic oscillators

The behavior of the boundary of generalized synchronization in two unidirectionally coupled chaotic oscillators depending on the value of the control parameter mismatch between interacting systems has been studied. Peculiarities in its behavior in the field of the relatively large values of the control parameter mistuning have been found. The character of this behavior and physical mechanisms resulting in the generalized synchronization regime onset in such systems have been explained by the analysis of the spectral compound of signal from response system.

Effect of noise on generalized synchronization of spatially extended systems described by Ginzburg–Landau equations

Effect of noise on generalized synchronization in spatially extended systems described by Ginzburg–Landau equations being in the spatio-temporal chaotic regime is studied. It is shown, that noise does not affect the synchronous regime threshold in such systems. The reasons of the revealed particularity have been explained by means of the modified system approach and confirmed by the results of numerical simulation. 

Method for generalized synchronization detecting and its application to communication systems

A method is proposed for generalized synchronization detection which does not exploit an auxiliary system. The method operates in a real time and uses a single response system that is driven alternately by the drive system signal and its delayed copy. A system of secure communication based on the proposed method is developed that has high resistance to noises of a transmission channel. The proposed communication system is studied both numerically and experimentally.